Home

Awesome

SQLova

Authors

Abstract

The model in a nutshell

Results (Updated at Jan 12, 2019)

ModelDev <br />logical form <br />accuracyDev<br />execution<br/> accuracyTest<br /> logical form<br /> accuracyTest<br /> execution<br /> accuracy
SQLova81.6 (+5.5)^87.2 (+3.2)^80.7 (+5.3)^86.2 (+2.5)^
SQLova-EG84.2 (+8.2)*90.2 (+3.0)*83.6(+8.2)*89.6 (+2.5)*

Source code

Requirements

Running code

Evaluation on WikiSQL DEV set

Evaluation on WikiSQL TEST set

Load pre-trained SQLova parameters.

Code base

Data

    cd sqlova
    export BERT_BASE_DIR=data/uncased_L-12_H-768_A-12
    python bert/convert_tf_checkpoint_to_pytorch.py \
        --tf_checkpoint_path $BERT_BASE_DIR/bert_model.ckpt \
        --bert_config_file    $BERT_BASE_DIR/bert_config.json \
        --pytorch_dump_path     $BERT_BASE_DIR/pytorch_model.bin 

License

Copyright 2019-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.