Home

Awesome

BQ-NCO: Bisimulation Quotienting for Efficient Neural Combinatorial Optimization

We provide the code to learn to solve four standard combinatorial optimization problems:

For BQ-Perceiver code, please check bq-perceiver branch.

Paper

See BQ-NCO: Bisimulation Quotienting for Efficient Neural Combinatorial Optimization for the paper associated with this codebase. If you find this code useful, please cite our paper as:

@inproceedings{
   drakulic2023bqnco,
   title={BQ-NCO: Bisimulation Quotienting for Efficient Neural Combinatorial Optimization},
   author={Darko Drakulic and Sofia Michel and Florian Mai and Arnaud Sors and Jean-Marc Andreoli},
   booktitle={Advances in Neural Information Processing Systems},
   year={2023},
   url={https://arxiv.org/abs/2301.03313},
}

Quickstart

For data preparation, check data directory.

Training

Using (near-) optimal trajectories

python train_[tsp,cvrp,op,kp].py
  --train_dataset TRAIN_DATASET
  --val_datasets VAL_DATASET
   --test_datasets TEST_DATASET
   --output_dir OUTPUT_DIR

Test

To test our pretrained models:

python test_[tsp,cvrp,op,kp].py
  --path_to_model_to_test ./pretrained_models/[tsp,cvrp,op,kp].best
  --test_datasets TEST_DATASET
  --output_dir OUTPUT_DIR
  --test_only