Awesome
<!-- * @Description: YOLOv7 Pose TensorRT * @Author: nanmi * @Date: 2022-08-03 16:55:35 * @LastEditTime: 2022-08-12 09:36:35 * @LastEditors: nanmi * @GitHub:github.com/nanmi -->Pose detection base on Yolov7 Deploy TensorRT :two_hearts: :collision:
This project base on https://github.com/WongKinYiu/yolov7
System Requirements
cuda 11.4
TensorRT 8+
OpenCV 4.0+ (build with opencv-contrib module) how to build
Export onnx model
Need to shield reshap and permute operators like this in the keypoint-related code class IKeypoint(nn.Module)
def forward(self, x):
# x = x.copy() # for profiling
z = [] # inference output
self.training |= self.export
for i in range(self.nl):
if self.nkpt is None or self.nkpt==0:
x[i] = self.im[i](self.m[i](self.ia[i](x[i]))) # conv
else :
x[i] = torch.cat((self.im[i](self.m[i](self.ia[i](x[i]))), self.m_kpt[i](x[i])), axis=1)
if not self.training: # inference <------ new add
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
x_det = x[i][..., :6]
x_kpt = x[i][..., 6:]
if not self.training: # inference
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
kpt_grid_x = self.grid[i][..., 0:1]
kpt_grid_y = self.grid[i][..., 1:2]
...
use this script to export onnx model.
import sys
sys.path.append('./') # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
import models
from models.experimental import attempt_load
from utils.activations import Hardswish, SiLU
# Load PyTorch model
weights = 'yolov7-w6-pose.pt'
device = torch.device('cuda:0')
model = attempt_load(weights, map_location=device) # load FP32 model
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
model.model[-1].export = True # set Detect() layer grid export
model.eval()
# Input
img = torch.randn(1, 3, 960, 960).to(device) # image size(1,3,320,192) iDetection
torch.onnx.export(model, img, 'yolov7-w6-pose.onnx', verbose=False, opset_version=12, input_names=['images'])
you will get:
use YoloLayer_TRT_v7.0/script/add_custom_yolo_op.py
to add a new op lookes like this:
Build yolo layer tensorrt plugin
cd {this repo}/YoloLayer_TRT_v7.0
mkdir build && cd build
cmake .. && make
generate libyolo.so
when build successfully.
Build TensorRT engine
cd {this repo}/
trtexec --onnx=yolov7-w6-pose-sim-yolo.onnx --fp16 --saveEngine=yolov7-w6-pose-sim-yolo-fp16.engine --plugins={this repo}/YoloLayer_TRT_v7.0/build/libyolo.so
wait a long time :satisfied:
TensorRT engine is generated successfully.
Inference
cd {this repo}/yolov7-pose/
mkdir build && cd build
cmake .. && make
# Inference test
cd {this repo}/yolov7-pose/build/
./yolov7_pose {your build engine} -i ../person.jpg
Result
About License
For the 3rd-party module and TensorRT, you need to follow their license
For the part I wrote, you can do anything you want