Home

Awesome

Kaggle CIFAR-10

Code for CIFAR-10 competition. http://www.kaggle.com/c/cifar-10

Summary

Description
Data Augmentationcropping, scaling and horizontal reflection. see lib/data_augmentation.lua
PreprocessingGlobal Contrast Normalization (GCN) and ZCA whitening. see lib/preprocessing.lua
ModelNetwork In Network (NIN). see nin_model.lua
Training Time30 hours on GTX760.
Prediction Time5 hours on GTX760.
Result0.92210 in public leaderboard.

Developer Environment

Installation

Install CUDA (on Ubuntu 14.04):

apt-get install nvidia-331
apt-get install nvidia-cuda-toolkit

Install Torch7:

curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-all | bash

Install(or upgrade) dependency packages:

luarocks install torch
luarocks install nn
luarocks install cutorch
luarocks install cunn

Checking CUDA environment

th cuda_test.lua

Please check your Torch7/CUDA environment when this code fails.

Convert dataset

Please place the data files into a subfolder ./data.

ls ./data
test  train  trainLabels.csv

- th convert_data.lua

Local testing

th validate.lua

dataset:

traintest
1-4000040001-50000

Generating the submission.txt

th train.lua
th predict.lua

Figure

data augmentation + preprocessing

data-augmentation-preprocessing

References