Home

Awesome

AT

build status

A Haskell rewrite of Kenzo, a collection of algorithms for 'effective algebraic topology'. The algorithms and implementations in Kenzo were created by Francis Sergeraert, Julio Rubio Garcia, Xavier Dousson, Ana Romero and many collaborators.

Writing it from scratch myself is the only chance I have of understanding it!

Examples

See the examples/ folder.

...
> let x = totalSpace s3 (Wbar kz1) fibration
> putStr "π₄ S³ is: "
> print (homology x !! 4)
π₄ S³ is: ℤ/2
> homology (Wbar (WbarDiscrete (Zmod 3)))
[ℤ,0,ℤ/3,0,ℤ/3,0,ℤ/(3^2),ℤ/3,ℤ/3,ℤ/3,ℤ/3 ⊕ ℤ/3,^C

Central Concepts of Kenzo

A simplicial set X is described by a type a, containing whatever data is required to specify X, and a type GeomSimplex a, whose elements correspond to non-degenerate simplices (in Kenzo called 'geometric simplices'). Like Kenzo we also allow a predicate on GeomSimplex a specifying when an element actually describes a geometric simplex and when it is 'spurious'.

An actual simplex of X is a geometric simplex together with a 'formal degeneracy operator', which is a list of degeneracy operators in a normal form. Face maps are implemented as functions from geometric simplices to (possibly degenerate) simplices, and the extension of these face maps to all simplices is forced by the simplicial identities.

A simplicial set is of finite type if there is a finite number of geometric simplices for each dimension, and there is a function giving a list of these simplices for any dimension n. It is not required that there are finitely many geometric simplices overall.

The normalised chain complex N(X) of X has each N(X)_n given by the free abelian group on the set of nondegenerate n-simplices of X, with the boundary of a simplex calculated similar to usual (the alternating sum of face maps), but ignoring any degenerate faces.

If C(X) is the ordinary chain complex of simplicial chains of X, the quotient map C(X) -> N(X) is a quasi-isomorphism, and so if X is of finite type, then the homology of X can be computed via N(X).

But many unavoidable simplicial sets (like K(ℤ,n) and loop spaces ΩX) are not of finite type, and so we need some other way to calculate their homology. This is where 'effective homology' comes in.

A reduction between chain complexes C and D is a strong deformation retract of chain complexes. The data of a reduction unwinds to a triple (f : C -> D, g : D -> C, h : C -> C) where f and g are degree 0, the homotopy operator h is degree 1, and certain equations involving these hold. A (strong chain) equivalence between two chain complexes C and D is a span of reductions l : E -> C and r : E -> D.

An effective homology structure on C is an equivalence between C and a chain complex F of finite type.

A simplicial set with effective homology is a simplicial set X equipped with an effective homology structure on N(X).

The point of Kenzo is that although constructions on simplicial sets sometimes do not preserve levelwise finiteness, they do extend to effective homology structures. And so if we begin with a finite simplicial complex and perform some constructions using it, then we can often compute the homology of the result even if the actual simplicial sets are now far too complicated to get a handle on.

Plan

Homological Algebra

Simplicial Sets

Effective Homology

Misc TODOs

Notes

References

Code:

Papers:

Everything even remotely relevant to effective algebraic topology that I can find (not all of which is relevant for implementation). Some of the documents have multiple versions; I have tried to link to the most recent in each case. Some material is repeated in different references.

<!-- To generate: pandoc kenzo.bib -C --csl=acm-sig-proceedings.csl -t gfm -o out.md --> <div id="refs" class="references csl-bib-body"> <div id="ref-medina-mardones:axiomatic-steenrod" class="csl-entry">

<span class="csl-left-margin">[1] </span><span class="csl-right-inline">Medina-Mardones, A.M. 2022. An axiomatic characterization of Steenrod’s cup-i products.</span>

</div> <div id="ref-medina-mardones:steenrod-formulas" class="csl-entry">

<span class="csl-left-margin">[2] </span><span class="csl-right-inline">Medina-Mardones, A.M. 2022. New formulas for cup-i products and fast computation of Steenrod squares.</span>

</div> <div id="ref-franz:twisting" class="csl-entry">

<span class="csl-left-margin">[3] </span><span class="csl-right-inline">Franz, M. 2021. Szczarba’s twisting cochain and the Eilenberg-Zilber maps. Collectanea Mathematica. 72, 3 (2021), 569–586.</span>

</div> <div id="ref-gr:leray-serre" class="csl-entry">

<span class="csl-left-margin">[4] </span><span class="csl-right-inline">Guidolin, A. and Romero, A. 2021. Computing higher Leray-Serre spectral sequences of towers of fibrations. Foundations of Computational Mathematics. 21, 4 (2021), 1023–1074.</span>

</div> <div id="ref-km:cochain-may-steenrod" class="csl-entry">

<span class="csl-left-margin">[5] </span><span class="csl-right-inline">Kaufmann, R.M. and Medina-Mardones, A.M. 2021. Cochain level May-Steenrod operations. Forum Math. 33, 6 (2021), 1507–1526.</span>

</div> <div id="ref-chen:thesis" class="csl-entry">

<span class="csl-left-margin">[6] </span><span class="csl-right-inline">Chen, R. 2020. E<sub></sub>-Rings and Modules in Kan Spectral Sheaves. University of Michigan.</span>

</div> <div id="ref-rrss:em-spectral-sequence" class="csl-entry">

<span class="csl-left-margin">[7] </span><span class="csl-right-inline">Romero, A., Rubio, J., Sergeraert, F. and Szymik, M. 2020. A new Kenzo module for computing the Eilenberg-Moore spectral sequence. ACM Communications in Computer Algebra. 54, 2 (2020), 57–60.</span>

</div> <div id="ref-rrs:fibrations-implementation" class="csl-entry">

<span class="csl-left-margin">[8] </span><span class="csl-right-inline">Romero, A., Rubio, J. and Sergeraert, F. 2019. An implementation of effective homotopy of fibrations. Journal of Symbolic Computation. 94, (2019), 149–172.</span>

</div> <div id="ref-as:ez-dvf" class="csl-entry">

<span class="csl-left-margin">[9] </span><span class="csl-right-inline">Romero, A. and Sergeraert, F. 2019. The Eilenberg-Zilber theorem via discrete vector fields.</span>

</div> <div id="ref-zhechev:thesis" class="csl-entry">

<span class="csl-left-margin">[10] </span><span class="csl-right-inline">Zhechev, S. 2019. Algorithmic aspects of homotopy theory and embeddability. Institute of Science; Technology Austria.</span>

</div> <div id="ref-sergeraert:hexagonal-lemma" class="csl-entry">

<span class="csl-left-margin">[11] </span><span class="csl-right-inline">Sergeraert, F. 2018. The homological hexagonal lemma. Georgian Mathematical Journal. 25, 4 (2018), 603–622.</span>

</div> <div id="ref-vj:ainfty-algorithms" class="csl-entry">

<span class="csl-left-margin">[12] </span><span class="csl-right-inline">Vejdemo-Johansson, M. 2018. Algorithms in A<sup></sup>-algebras. Georgian Mathematical Journal. 25, 4 (2018), 629–635.</span>

</div> <div id="ref-ckp:kan-spectra" class="csl-entry">

<span class="csl-left-margin">[13] </span><span class="csl-right-inline">Chen, R., Kriz, I. and Pultr, A. 2017. Kan’s combinatorial spectra and their sheaves revisited. Theory and Applications of Categories. 32, (2017), No. 39, 1363–1396.</span>

</div> <div id="ref-rs:bousfield-kan" class="csl-entry">

<span class="csl-left-margin">[14] </span><span class="csl-right-inline">Romero, A. and Sergeraert, F. 2017. A Bousfield-Kan algorithm for computing the effective homotopy of a space. Foundations of Computational Mathematics. 17, 5 (2017), 1335–1366.</span>

</div> <div id="ref-hess:twisting-cochain" class="csl-entry">

<span class="csl-left-margin">[15] </span><span class="csl-right-inline">Hess, K. 2016. The Hochschild complex of a twisting cochain. Journal of Algebra. 451, (2016), 302–356.</span>

</div> <div id="ref-filakovsky:thesis" class="csl-entry">

<span class="csl-left-margin">[16] </span><span class="csl-right-inline">Filakovský, M. 2015. Algorithmic construction of the postnikov tower for diagrams of simplicial sets. Masaryk University.</span>

</div> <div id="ref-rs:iterated-loop" class="csl-entry">

<span class="csl-left-margin">[17] </span><span class="csl-right-inline">Romero, A. and Sergeraert, F. 2015. A combinatorial tool for computing the effective homotopy of iterated loop spaces. Discrete & Computational Geometry. 53, 1 (2015), 1–15.</span>

</div> <div id="ref-ckmsvw:maps-into-sphere" class="csl-entry">

<span class="csl-left-margin">[18] </span><span class="csl-right-inline">Čadek, M., Krčál, M., Matoušek, J., Sergeraert, F., Vokřínek, L. and Wagner, U. 2014. Computing all maps into a sphere. Journal of the ACM. 61, 3 (2014), Art. 17, 44.</span>

</div> <div id="ref-ckmvw:poly-homotopy-groups" class="csl-entry">

<span class="csl-left-margin">[19] </span><span class="csl-right-inline">Čadek, M., Krčál, M., Matoušek, J., Vokřínek, L. and Wagner, U. 2014. Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. SIAM Journal on Computing. 43, 5 (2014), 1728–1780.</span>

</div> <div id="ref-coq-fpm" class="csl-entry">

<span class="csl-left-margin">[20] </span><span class="csl-right-inline">Cohen, C. and Mörtberg, A. 2014. A coq formalization of finitely presented modules. Interactive theorem proving (2014), 193–208.</span>

</div> <div id="ref-filakovsky:hocolim" class="csl-entry">

<span class="csl-left-margin">[21] </span><span class="csl-right-inline">Filakovský, M. 2014. Effective homology for homotopy colimit and cofibrant replacement. Universitatis Masarykianae Brunensis. Facultas Scientiarum Naturalium. Archivum Mathematicum. 50, 5 (2014), 273–286.</span>

</div> <div id="ref-sergeraert:dvf-slides" class="csl-entry">

<span class="csl-left-margin">[22] </span><span class="csl-right-inline">Sergeraert, F. 2013. Discrete vector fields and fundamental algebraic topology.</span>

</div> <div id="ref-kms:poly-em-spaces" class="csl-entry">

<span class="csl-left-margin">[23] </span><span class="csl-right-inline">Krčál, M., Matoušek, J. and Sergeraert, F. 2013. Polynomial-time homology for simplicial Eilenberg-MacLane spaces. Foundations of Computational Mathematics. The Journal of the Society for the Foundations of Computational Mathematics. 13, 6 (2013), 935–963.</span>

</div> <div id="ref-filakovsky:twisted-products" class="csl-entry">

<span class="csl-left-margin">[24] </span><span class="csl-right-inline">Filakovský, M. 2012. Effective chain complexes for twisted products. Universitatis Masarykianae Brunensis. Facultas Scientiarum Naturalium. Archivum Mathematicum. 48, 5 (2012), 313–322.</span>

</div> <div id="ref-rr:homology-of-groups" class="csl-entry">

<span class="csl-left-margin">[25] </span><span class="csl-right-inline">Romero, A. and Rubio, J. 2012. Computing the homology of groups: The geometric way. Journal of Symbolic Computation. 47, 7 (2012), 752–770.</span>

</div> <div id="ref-as:dvf" class="csl-entry">

<span class="csl-left-margin">[26] </span><span class="csl-right-inline">Romero, A. and Sergeraert, F. 2012. Discrete vector fields and fundamental algebraic topology.</span>

</div> <div id="ref-rs:homotopy-fibrations" class="csl-entry">

<span class="csl-left-margin">[27] </span><span class="csl-right-inline">Romero, A. and Sergeraert, F. 2012. Effective homotopy of fibrations. Applicable Algebra in Engineering, Communication and Computing. 23, 1-2 (2012), 85–100.</span>

</div> <div id="ref-rs:constructive-homology" class="csl-entry">

<span class="csl-left-margin">[28] </span><span class="csl-right-inline">Rubio, J. and Sergeraert, F. 2012. Constructive homological algebra and applications.</span>

</div> <div id="ref-stevenson:decalage" class="csl-entry">

<span class="csl-left-margin">[29] </span><span class="csl-right-inline">Stevenson, D. 2012. Décalage and Kan’s simplicial loop group functor. Theory and Applications of Categories. 26, (2012), No. 28, 768–787.</span>

</div> <div id="ref-spiwack:thesis" class="csl-entry">

<span class="csl-left-margin">[30] </span><span class="csl-right-inline">Spiwack, A. 2011. <span class="nocase">Verified Computing in Homological Algebra</span>. Ecole Polytechnique X.</span>

</div> <div id="ref-heras:pushout" class="csl-entry">

<span class="csl-left-margin">[31] </span><span class="csl-right-inline">Heras, J. 2010. Pushout construction for the Kenzo systems.</span>

</div> <div id="ref-real:twisted-ez" class="csl-entry">

<span class="csl-left-margin">[32] </span><span class="csl-right-inline">Álvarez, V., Armario, J.A., Frau, M.D. and Real, P. 2010. Cartan’s constructions and the twisted Eilenberg-Zilber theorem. Georgian Mathematical Journal. 17, 1 (2010), 13–23.</span>

</div> <div id="ref-brs:a-infty" class="csl-entry">

<span class="csl-left-margin">[33] </span><span class="csl-right-inline">Berciano Alcaraz, A., Rubio, J. and Sergeraert, F. 2010. A case study of A<sub></sub>-structure. Georgian Mathematical Journal. 17, 1 (2010), 57–77.</span>

</div> <div id="ref-heras:pushout-conf" class="csl-entry">

<span class="csl-left-margin">[34] </span><span class="csl-right-inline">Heras, J. 2010. Effective homology of the pushout of simplicial sets. Proceedings of the XII encuentros de álgebra computacional y aplicaciones (2010), 152–156.</span>

</div> <div id="ref-hprr:integrating-sources" class="csl-entry">

<span class="csl-left-margin">[35] </span><span class="csl-right-inline">Heras, J., Pascual, V., Romero, A. and Rubio, J. 2010. Integrating multiple sources to answer questions in algebraic topology. Proceedings of the 10th ASIC and 9th MKM international conference, and 17th calculemus conference on intelligent computer mathematics (Paris, France, 2010), 331–335.</span>

</div> <div id="ref-hess-tonks:loop-group" class="csl-entry">

<span class="csl-left-margin">[36] </span><span class="csl-right-inline">Hess, K. and Tonks, A. 2010. The loop group and the cobar construction. Proceedings of the American Mathematical Society. 138, 5 (2010), 1861–1876.</span>

</div> <div id="ref-romero:bousfield-kan" class="csl-entry">

<span class="csl-left-margin">[37] </span><span class="csl-right-inline">Romero, A. 2010. Computing the first stages of the Bousfield-Kan spectral sequence. Applicable Algebra in Engineering, Communication and Computing. 21, 3 (2010), 227–248.</span>

</div> <div id="ref-real:algebra-structures" class="csl-entry">

<span class="csl-left-margin">[38] </span><span class="csl-right-inline">Álvarez, V., Armario, J.A., Frau, M.D. and Real, P. 2009. Algebra structures on the comparison of the reduced bar construction and the reduced W-construction. Communications in Algebra. 37, 10 (2009), 3643–3665.</span>

</div> <div id="ref-rer:classifying-space" class="csl-entry">

<span class="csl-left-margin">[39] </span><span class="csl-right-inline">Romero, A., Ellis, G. and Rubio, J. 2009. Interoperating between computer algebra systems: Computing homology of groups with Kenzo and GAP. ISSAC 2009—Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation (2009), 303–310.</span>

</div> <div id="ref-sergeraert:cp-spaces" class="csl-entry">

<span class="csl-left-margin">[40] </span><span class="csl-right-inline">Sergeraert, F. 2009. Triangulations of complex projective spaces.</span>

</div> <div id="ref-br:homalg" class="csl-entry">

<span class="csl-left-margin">[41] </span><span class="csl-right-inline">Barakat, M. and Robertz, D. 2008. homalg: A meta-package for homological algebra. J. Algebra Appl. 7, 3 (2008), 299–317.</span>

</div> <div id="ref-thomas:wbar" class="csl-entry">

<span class="csl-left-margin">[42] </span><span class="csl-right-inline">Thomas, S. 2008. The functors and Diag ∘ Nerve are simplicially homotopy equivalent. Journal of Homotopy and Related Structures. 3, 1 (2008), 359–378.</span>

</div> <div id="ref-real:reducing-costs" class="csl-entry">

<span class="csl-left-margin">[43] </span><span class="csl-right-inline">Berciano, A., Jiménez, M.J. and Real, P. 2006. Reducing computational costs in the basic perturbation lemma. Computer algebra in scientific computing. V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov, eds. Springer, Berlin. 33–48.</span>

</div> <div id="ref-rrs:computing-spectral-sequences" class="csl-entry">

<span class="csl-left-margin">[44] </span><span class="csl-right-inline">Romero, A., Rubio, J. and Sergeraert, F. 2006. Computing spectral sequences. Journal of Symbolic Computation. 41, 10 (2006), 1059–1079.</span>

</div> <div id="ref-gr:cohomology-ops" class="csl-entry">

<span class="csl-left-margin">[45] </span><span class="csl-right-inline">González-Díaz, R. and Real, P. 2003. Computation of cohomology operations of finite simplicial complexes. Homology Homotopy Appl. 83–93.</span>

</div> <div id="ref-clement:thesis" class="csl-entry">

<span class="csl-left-margin">[46] </span><span class="csl-right-inline">Clément, A. 2002. Integral cohomology of finite Postnikov towers. Université de Lausanne.</span>

</div> <div id="ref-gonzalez-diaz:thesis" class="csl-entry">

<span class="csl-left-margin">[47] </span><span class="csl-right-inline">Díaz, R.G. 2000. Cohomology operations: A combinatorial approach. University of Seville.</span>

</div> <div id="ref-real:hpt" class="csl-entry">

<span class="csl-left-margin">[48] </span><span class="csl-right-inline">Real, P. 2000. Homological perturbation theory and associativity. Homology, Homotopy and Applications. 2, (2000), 51–88.</span>

</div> <div id="ref-dousson:thesis" class="csl-entry">

<span class="csl-left-margin">[49] </span><span class="csl-right-inline">Dousson, X. 1999. Homologie effective des classifiants et calculs de groupes d’homotopie. l’Université Joseph Fourier.</span>

</div> <div id="ref-goerss-jardine" class="csl-entry">

<span class="csl-left-margin">[50] </span><span class="csl-right-inline">Goerss, P.G. and Jardine, J.F. 1999. Simplicial homotopy theory. Birkhäuser Verlag, Basel.</span>

</div> <div id="ref-gr:steenrod-squares" class="csl-entry">

<span class="csl-left-margin">[51] </span><span class="csl-right-inline">González-Díaz, R. and Real, P. 1999. A combinatorial method for computing Steenrod squares. J. Pure Appl. Algebra. 89–108.</span>

</div> <div id="ref-at-reductions" class="csl-entry">

<span class="csl-left-margin">[52] </span><span class="csl-right-inline">Hurado, P.R., Álvarez, V., Armario, J.A. and González-Díaz, R. 1999. Algorithms in algebraic topology and homological algebra: The problem of the complexity. Zapiski Nauchnykh Seminarov POMI. 258, (1999), 161–184, 358.</span>

</div> <div id="ref-kendoc" class="csl-entry">

<span class="csl-left-margin">[53] </span><span class="csl-right-inline">Rubio Garcia, J., Sergeraert, F. and Siret, Y. 1999. Kenzo: A symbolic software for effective homology computation. Institut Fourier.</span>

</div> <div id="ref-forman:morse" class="csl-entry">

<span class="csl-left-margin">[54] </span><span class="csl-right-inline">Forman, R. 1998. Morse theory for cell complexes. Advances in Mathematics. 134, 1 (1998), 90–145.</span>

</div> <div id="ref-ks:iterating-bar" class="csl-entry">

<span class="csl-left-margin">[55] </span><span class="csl-right-inline">Kadeishvili, T. and Saneblidze, S. 1998. Iterating the bar construction. Georgian Mathematical Journal. 5, 5 (1998), 441–452.</span>

</div> <div id="ref-real:homotopy-groups" class="csl-entry">

<span class="csl-left-margin">[56] </span><span class="csl-right-inline">Real, P. 1996. An algorithm computing homotopy groups. Math. Comput. Simulation. 42, 4-6 (1996), 461–465.</span>

</div> <div id="ref-real:steenrod-squares" class="csl-entry">

<span class="csl-left-margin">[57] </span><span class="csl-right-inline">Real, P. 1996. On the computability of the Steenrod squares. Ann. Univ. Ferrara Sez. VII (N.S.). 42, (1996), 57–63 (1998).</span>

</div> <div id="ref-morace:thesis" class="csl-entry">

<span class="csl-left-margin">[58] </span><span class="csl-right-inline">Morace, F. 1994. Cochaînes de brown et transformation d’Eilenberg-Mac Lane: Réécriture en dimension deux et homologie. Paris 7.</span>

</div> <div id="ref-morace-proute:twisting" class="csl-entry">

<span class="csl-left-margin">[59] </span><span class="csl-right-inline">Morace, F. and Prouté, A. 1994. Brown’s natural twisting cochain and the Eilenberg-Mac Lane transformation. J. Pure Appl. Algebra. 97, 1 (1994), 81–89.</span>

</div> <div id="ref-real:thesis" class="csl-entry">

<span class="csl-left-margin">[60] </span><span class="csl-right-inline">Real Jurado, P. 1993. Algoritmos de cálculo de homología efectiva de los espacios clasificantes. Universidad de Sevilla, Departamento de Geometría y Topología.</span>

</div> <div id="ref-rs:locally-effective" class="csl-entry">

<span class="csl-left-margin">[61] </span><span class="csl-right-inline">Rubio, J. and Sergeraert, F. 1993. Locally effective objects and algebraic topology. Computational algebraic geometry (Nice, 1992). F. Eyssette and A. Galligo, eds. Birkhäuser Boston, Boston, MA. 235–251.</span>

</div> <div id="ref-gl:perturbation-theory-ii" class="csl-entry">

<span class="csl-left-margin">[62] </span><span class="csl-right-inline">Gugenheim, V.K.A.M., Lambe, L.A. and Stasheff, J.D. 1991. Perturbation theory in differential homological algebra. II. Illinois J. Math. 35, 3 (1991), 357–373.</span>

</div> <div id="ref-hk:small-models-algebras" class="csl-entry">

<span class="csl-left-margin">[63] </span><span class="csl-right-inline">Huebschmann, J. and Kadeishvili, T. 1991. Small models for chain algebras. Math. Z. 207, 2 (1991), 245–280.</span>

</div> <div id="ref-gl:perturbation-theory-i" class="csl-entry">

<span class="csl-left-margin">[64] </span><span class="csl-right-inline">Gugenheim, V.K.A.M. and Lambe, L.A. 1989. Perturbation theory in differential homological algebra. I. Illinois J. Math. 33, 4 (1989), 566–582.</span>

</div> <div id="ref-lambe-stasheff:perturbation" class="csl-entry">

<span class="csl-left-margin">[65] </span><span class="csl-right-inline">Lambe, L. and Stasheff, J. 1987. Applications of perturbation theory to iterated fibrations. Manuscripta Mathematica. 58, 3 (1987), 363–376.</span>

</div> <div id="ref-sergeraert:effective-1" class="csl-entry">

<span class="csl-left-margin">[66] </span><span class="csl-right-inline">Sergeraert, F. 1987. Homologie effective. I. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics. 304, 11 (1987), 279–282.</span>

</div> <div id="ref-sergeraert:effective-2" class="csl-entry">

<span class="csl-left-margin">[67] </span><span class="csl-right-inline">Sergeraert, F. 1987. Homologie effective. II. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics. 304, 12 (1987), 319–321.</span>

</div> <div id="ref-eml:homology-kgn-ii" class="csl-entry">

<span class="csl-left-margin">[68] </span><span class="csl-right-inline">Eilenberg, S. and Mac Lane, S. 1954. On the groups H(Π,n). II. Methods of computation. Ann. of Math. (2). 60, (1954), 49–139.</span>

</div> <div id="ref-eml:homology-kgn-i" class="csl-entry">

<span class="csl-left-margin">[69] </span><span class="csl-right-inline">Eilenberg, S. and Mac Lane, S. 1953. On the groups H(Π,n). I. Ann. of Math. (2). 58, (1953), 55–106.</span>

</div> </div>