Home

Awesome

SoRecGAT: Leveraging Graph Attention Mechanism for Top-N Social Recommendation

This is our tensorflow implementation of the paper "SoRecGAT: Leveraging Graph Attention Mechanism for Top-N Social Recommendation SoRecGAT implementation".

Environment

tensorflow-gpu == 1.12.0

numpy == 1.16.0

Python == 2.7.12

scipy == 1.2.0

Example to Run the Codes

For Music dataset

python Main.py --method sorecgatitem --path ../data/music/ --dataset music --res_path ../results/ --epochs 60 --batch_size 1024 --valid_batch_siz 256 --lr 0.0004 --initializer xavier --stddev 0.02 --optimizer rmsprop --loss ce --num_factors 64 --num_negatives 1 --keep_prob 0.5 --attn_keep 1.0 --ffd_keep 1.0 --proj_keep 1.0 --hid_units [32] --n_heads [12,6] --at_k 5 --num_thread 8

For Art dataset

python Main.py --method sorecgatuser --path ../data/art/ --dataset art --res_path ../results/ --epochs 60 --batch_size 1024 --valid_batch_siz 256 --lr 0.0001 --initializer xavier --stddev 0.02 --optimizer rmsprop --loss ce --num_factors 64 --num_negatives 1 --keep_prob 0.5 --attn_keep 1.0 --ffd_keep 1.0 --proj_keep 0.7 --hid_units [32] --n_heads [12,6] --at_k 5 --num_thread 8

Dataset Description

Music Dataset

Art Dataset

Link for all the datasets: https://www.dropbox.com/sh/3bkratvwuhgzctw/AABIA2GxPy4KZbmX0Do4S8b5a?dl=0