Home

Awesome

Adversarial AutoEncoder

Requirements

Incorporating Label Information in the Adversarial Regularization

run semi-supervised/regularize_z/train.py

We trained with a prior (a mixture of 10 2-D Gaussians or Swissroll distribution) on 10K labeled MNIST examples and 40K unlabeled MNIST examples.

gaussian

swissroll

Supervised Adversarial Autoencoders

run supervised/learn_style/train.py

analogy

Semi-Supervised Adversarial Autoencoders

run semi-supervised/classification/train.py

data#
labeled100
unlabeled49900
validation10000

Validation accuracy at each epoch

classification

Analogies

analogy_semi

Unsupervised clustering

run unsupervised/clustering/train.py

16 clusters

clusters_16

32 clusters

clusters_32

Dimensionality reduction

run unsupervised/dim_reduction/train.py

reduction_unsupervised

run semi-supervised/dim_reduction/train.py

reduction_100