Awesome
Learning Discrete Representations via Information Maximizing Self Augmented Training
Requirements
- Chainer 2
MNIST
Unsupervised
python train.py
Results
train data (60,000)
accuracy: 98.4%
5889 18 0 2 0 1 3 3 7 0
1 3 13 27 14 6538 0 145 0 1
9 2 21 2 1 4 2 5902 5 10
1 0 16 0 10 2 39 18 24 6021
6 12 4 5764 48 2 0 2 4 0
5 30 2 0 22 0 5336 4 7 15
12 5863 0 2 0 3 29 2 6 1
4 0 6136 18 48 16 1 38 2 2
3 9 2 10 13 17 34 7 5748 8
9 3 20 40 5746 3 15 2 81 30
test data (10,000)
accuracy: 98.4%
979 0 1 0 0 0 0 0 0 0
0 1 1 1 0 1120 1 10 0 1
3 0 8 1 0 0 0 1017 2 1
0 0 5 0 0 0 9 2 2 992
1 2 0 971 8 0 0 0 0 0
2 3 1 1 2 0 879 0 1 3
6 947 0 1 0 2 2 0 0 0
0 0 1005 3 4 8 0 7 1 0
4 0 2 0 3 0 4 1 958 2
2 1 6 11 969 0 3 1 11 5
Semi-supervised
python train.py -l 10