Awesome
OmniCat Bayes
A Naive Bayes text classification implementation as an OmniCat classifier strategy.
Installation
Add this line to your application's Gemfile:
gem 'omnicat-bayes'
And then execute:
$ bundle
Or install it yourself as:
$ gem install omnicat-bayes
Usage
See rdoc for detailed usage.
Configurations
Optional configuration sample:
OmniCat.configure do |config|
# you can enable auto train mode by :unique or :continues
# unique: only uniq docs will be added to training docs on prediction
# continues: always add docs to training docs on prediction
config.auto_train = :off
config.exclude_tokens = ['something', 'anything'] # exclude token list
config.token_patterns = {
# exclude tokens with Regex patterns
minus: [/[\s\t\n\r]+/, /(@[\w\d]+)/],
# include tokens with Regex patterns
plus: [/[\p{L}\-0-9]{2,}/, /[\!\?]/, /[\:\)\(\;\-\|]{2,3}/]
}
end
Bayes classifier
Create a classifier object with Bayes strategy.
# If you need to change strategy on runtime, you should prefer this inialization
bayes = OmniCat::Classifier.new(OmniCat::Classifiers::Bayes.new)
or
# If you only need to use only Bayes classification, then you can use
bayes = OmniCat::Classifiers::Bayes.new
Create categories
Create a classification category.
bayes.add_category('positive')
bayes.add_category('negative')
Train
Train category with a document.
bayes.train('positive', 'great if you are in a slap happy mood .')
bayes.train('negative', 'bad tracking issue')
Untrain
Untrain category with a document.
bayes.untrain('positive', 'great if you are in a slap happy mood .')
bayes.untrain('negative', 'bad tracking issue')
Train batch
Train category with multiple documents.
bayes.train_batch('positive', [
'a feel-good picture in the best sense of the term...',
'it is a feel-good movie about which you can actually feel good.',
'love and money both of them are good choises'
])
bayes.train_batch('negative', [
'simplistic , silly and tedious .',
'interesting , but not compelling . ',
'seems clever but not especially compelling'
])
Untrain batch
Untrain category with multiple documents.
bayes.untrain_batch('positive', [
'a feel-good picture in the best sense of the term...',
'it is a feel-good movie about which you can actually feel good.',
'love and money both of them are good choises'
])
bayes.untrain_batch('negative', [
'simplistic , silly and tedious .',
'interesting , but not compelling . ',
'seems clever but not especially compelling'
])
Classify
Classify a document.
result = bayes.classify('I feel so good and happy')
=> #<OmniCat::Result:0x007febb152af68 @top_score_key="positive", @scores={"positive"=>#<OmniCat::Score:0x007febb152add8 @key="positive", @value=6.813226744186048e-09, @percentage=58>, "negative"=>#<OmniCat::Score:0x007febb152ac70 @key="negative", @value=4.875003449064939e-09, @percentage=42>}, @total_score=1.1688230193250986e-08>
result.to_hash
=> {:top_score_key=>"positive", :scores=>{"positive"=>{:key=>"positive", :value=>6.813226744186048e-09, :percentage=>58}, "negative"=>{:key=>"negative", :value=>4.875003449064939e-09, :percentage=>42}}, :total_score=>1.1688230193250986e-08}
result.top_score
=> #<OmniCat::Score:0x007febb152add8 @key="positive", @value=6.813226744186048e-09, @percentage=58>
result.top_score.to_hash
=> {:key=>"positive", :value=>6.813226744186048e-09, :percentage=>58}
Classify batch
Classify multiple documents at a time.
results = bayes.classify_batch(
[
'the movie is silly so not compelling enough',
'a good piece of work'
]
)
=> [#<OmniCat::Result:0x007febb14f3680 @top_score_key="negative", @scores={"positive"=>#<OmniCat::Score:0x007febb14f34a0 @key="positive", @value=7.971480930520432e-14, @percentage=22>, "negative"=>#<OmniCat::Score:0x007febb14f32c0 @key="negative", @value=2.834304330851709e-13, @percentage=78>}, @total_score=3.6314524239037524e-13>, #<OmniCat::Result:0x007febb14f2aa0 @top_score_key="positive", @scores={"positive"=>#<OmniCat::Score:0x007febb14f2960 @key="positive", @value=3.802731206057328e-07, @percentage=72>, "negative"=>#<OmniCat::Score:0x007febb14f2820 @key="negative", @value=1.4625010347194818e-07, @percentage=28>}, @total_score=5.26523224077681e-07>]
Convert to hash
Convert full Bayes object to hash.
# For storing, restoring modal data
bayes_hash = bayes.to_hash
=> {:categories=>{"positive"=>{:doc_count=>4, :docs=>{"28fd29bbf840c86db65e510ff3cd07a9"=>{:content=>"great if you are in a slap happy mood .", :content_md5=>"28fd29bbf840c86db65e510ff3cd07a9", :count=>1, :tokens=>{"great"=>1, "if"=>1, "you"=>1, "are"=>1, "in"=>1, "slap"=>1, "happy"=>1, "mood"=>1}}, "82b4cd9513f448dea0024f2d0e2ccd44"=>{:content=>"a feel-good picture in the best sense of the term...", :content_md5=>"82b4cd9513f448dea0024f2d0e2ccd44", :count=>1, :tokens=>{"feel-good"=>1, "picture"=>1, "in"=>1, "the"=>2, "best"=>1, "sense"=>1, "of"=>1, "term"=>1}}, "f917bf1cf1256c78c5436d850dab3104"=>{:content=>"it is a feel-good movie about which you can actually feel good.", :content_md5=>"f917bf1cf1256c78c5436d850dab3104", :count=>1, :tokens=>{"it"=>1, "is"=>1, "feel-good"=>1, "movie"=>1, "about"=>1, "which"=>1, "you"=>1, "can"=>1, "actually"=>1, "feel"=>1, "good"=>1}}, "4343bbe84c035733708c3f58136f321e"=>{:content=>"love and money both of them are good choises", :content_md5=>"4343bbe84c035733708c3f58136f321e", :count=>1, :tokens=>{"love"=>1, "and"=>1, "money"=>1, "both"=>1, "of"=>1, "them"=>1, "are"=>1, "good"=>1, "choises"=>1}}}, :name=>"positive", :tokens=>{"great"=>1, "if"=>1, "you"=>2, "are"=>2, "in"=>2, "slap"=>1, "happy"=>1, "mood"=>1, "feel-good"=>2, "picture"=>1, "the"=>2, "best"=>1, "sense"=>1, "of"=>2, "term"=>1, "it"=>1, "is"=>1, "movie"=>1, "about"=>1, "which"=>1, "can"=>1, "actually"=>1, "feel"=>1, "good"=>2, "love"=>1, "and"=>1, "money"=>1, "both"=>1, "them"=>1, "choises"=>1}, :token_count=>37, :prior=>0.5}, "negative"=>{:doc_count=>4, :docs=>{"89b36e774579662591ea21b3283d9b35"=>{:content=>"bad tracking issue", :content_md5=>"89b36e774579662591ea21b3283d9b35", :count=>1, :tokens=>{"bad"=>1, "tracking"=>1, "issue"=>1}}, "b0ec48bc87527e285b26d6cce8e278e7"=>{:content=>"simplistic , silly and tedious .", :content_md5=>"b0ec48bc87527e285b26d6cce8e278e7", :count=>1, :tokens=>{"simplistic"=>1, "silly"=>1, "and"=>1, "tedious"=>1}}, "ae9d4fbaf40906614ca712a888648c5f"=>{:content=>"interesting , but not compelling . ", :content_md5=>"ae9d4fbaf40906614ca712a888648c5f", :count=>1, :tokens=>{"interesting"=>1, "but"=>1, "not"=>1, "compelling"=>1}}, "0e495f5d88d8049746a1b6961bf3cc90"=>{:content=>"seems clever but not especially compelling", :content_md5=>"0e495f5d88d8049746a1b6961bf3cc90", :count=>1, :tokens=>{"seems"=>1, "clever"=>1, "but"=>1, "not"=>1, "especially"=>1, "compelling"=>1}}}, :name=>"negative", :tokens=>{"bad"=>1, "tracking"=>1, "issue"=>1, "simplistic"=>1, "silly"=>1, "and"=>1, "tedious"=>1, "interesting"=>1, "but"=>2, "not"=>2, "compelling"=>2, "seems"=>1, "clever"=>1, "especially"=>1}, :token_count=>17, :prior=>0.5}}, :category_count=>2, :category_size_limit=>0, :doc_count=>8, :token_count=>54, :unique_token_count=>43, :k_value=>1.0}
Load from hash
Load full Bayes object from hash.
another_bayes_obj = OmniCat::Classifiers::Bayes.new(bayes_hash)
=> #<OmniCat::Classifiers::Bayes:0x007febb14d15a8 @categories={"positive"=>#<OmniCat::Classifiers::BayesInternals::Category:0x007febb14d1530 @doc_count=4, @docs={"28fd29bbf840c86db65e510ff3cd07a9"=>{:content=>"great if you are in a slap happy mood .", :content_md5=>"28fd29bbf840c86db65e510ff3cd07a9", :count=>1, :tokens=>{"great"=>1, "if"=>1, "you"=>1, "are"=>1, "in"=>1, "slap"=>1, "happy"=>1, "mood"=>1}}, "82b4cd9513f448dea0024f2d0e2ccd44"=>{:content=>"a feel-good picture in the best sense of the term...", :content_md5=>"82b4cd9513f448dea0024f2d0e2ccd44", :count=>1, :tokens=>{"feel-good"=>1, "picture"=>1, "in"=>1, "the"=>2, "best"=>1, "sense"=>1, "of"=>1, "term"=>1}}, "f917bf1cf1256c78c5436d850dab3104"=>{:content=>"it is a feel-good movie about which you can actually feel good.", :content_md5=>"f917bf1cf1256c78c5436d850dab3104", :count=>1, :tokens=>{"it"=>1, "is"=>1, "feel-good"=>1, "movie"=>1, "about"=>1, "which"=>1, "you"=>1, "can"=>1, "actually"=>1, "feel"=>1, "good"=>1}}, "4343bbe84c035733708c3f58136f321e"=>{:content=>"love and money both of them are good choises", :content_md5=>"4343bbe84c035733708c3f58136f321e", :count=>1, :tokens=>{"love"=>1, "and"=>1, "money"=>1, "both"=>1, "of"=>1, "them"=>1, "are"=>1, "good"=>1, "choises"=>1}}}, @name="positive", @tokens={"great"=>1, "if"=>1, "you"=>2, "are"=>2, "in"=>2, "slap"=>1, "happy"=>1, "mood"=>1, "feel-good"=>2, "picture"=>1, "the"=>2, "best"=>1, "sense"=>1, "of"=>2, "term"=>1, "it"=>1, "is"=>1, "movie"=>1, "about"=>1, "which"=>1, "can"=>1, "actually"=>1, "feel"=>1, "good"=>2, "love"=>1, "and"=>1, "money"=>1, "both"=>1, "them"=>1, "choises"=>1}, @token_count=37, @prior=0.5>, "negative"=>#<OmniCat::Classifiers::BayesInternals::Category:0x007febb14d14e0 @doc_count=4, @docs={"89b36e774579662591ea21b3283d9b35"=>{:content=>"bad tracking issue", :content_md5=>"89b36e774579662591ea21b3283d9b35", :count=>1, :tokens=>{"bad"=>1, "tracking"=>1, "issue"=>1}}, "b0ec48bc87527e285b26d6cce8e278e7"=>{:content=>"simplistic , silly and tedious .", :content_md5=>"b0ec48bc87527e285b26d6cce8e278e7", :count=>1, :tokens=>{"simplistic"=>1, "silly"=>1, "and"=>1, "tedious"=>1}}, "ae9d4fbaf40906614ca712a888648c5f"=>{:content=>"interesting , but not compelling . ", :content_md5=>"ae9d4fbaf40906614ca712a888648c5f", :count=>1, :tokens=>{"interesting"=>1, "but"=>1, "not"=>1, "compelling"=>1}}, "0e495f5d88d8049746a1b6961bf3cc90"=>{:content=>"seems clever but not especially compelling", :content_md5=>"0e495f5d88d8049746a1b6961bf3cc90", :count=>1, :tokens=>{"seems"=>1, "clever"=>1, "but"=>1, "not"=>1, "especially"=>1, "compelling"=>1}}}, @name="negative", @tokens={"bad"=>1, "tracking"=>1, "issue"=>1, "simplistic"=>1, "silly"=>1, "and"=>1, "tedious"=>1, "interesting"=>1, "but"=>2, "not"=>2, "compelling"=>2, "seems"=>1, "clever"=>1, "especially"=>1}, @token_count=17, @prior=0.5>}, @category_count=2, @category_size_limit=0, @doc_count=8, @token_count=54, @unique_token_count=43, @k_value=1.0>
another_bayes_obj.classify('best senses')
=> #<OmniCat::Result:0x007febb14c0fc8 @top_score_key="positive", @scores={"positive"=>#<OmniCat::Score:0x007febb14c0ed8 @key="positive", @value=0.00029069767441860465, @percentage=52>, "negative"=>#<OmniCat::Score:0x007febb14c0de8 @key="negative", @value=0.0002704164413196322, @percentage=48>}, @total_score=0.0005611141157382368>
Best practices
For bayes classification always try to train same amount of documents for each category. So, do not activate auto training mode, because it make overages on balance of trained docs and makes algorithm go crazy :). To get best results on text classification you should apply some cleaning actions like spellchecking, stemming, stop words cleaning before training and prediction actions.
Contributing
- Fork it
- Create your feature branch (
git checkout -b my-new-feature
) - Commit your changes (
git commit -am 'Add some feature'
) - Push to the branch (
git push origin my-new-feature
) - Create new Pull Request
Copyright
Copyright © 2013 Mustafa Turan. See LICENSE for details.