Home

Awesome

Travis

GitHub stars GitHub forks

This repo contains the official Pytorch implementaion code.

Installation

Requirements

Our environments

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Usage

First, clone the repository locally:

git clone https://github.com/murufeng/EPSANet.git
cd EPSANet
conda create -n epsanet python=3.6 
conda activate epsanet
conda install -c pytorch pytorch torchvision

Training

To train models on ImageNet with 8 gpus run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py -a epsanet50 --data /path/to/imagenet 

Model Zoo

Models are trained with 8 GPUs on both ImageNet and MS-COCO 2017 dataset.

Image Classification on ImageNet

ModelParams(M)FLOPs(G)Top-1 (%)Top-5 (%)
EPSANet-50(Small)22.563.6277.4993.54
EPSANet-50(Large)27.904.7278.6494.18
EPSANet-101(Small)38.906.8278.4394.11
EPSANet-101(Large)49.598.9779.3894.58

Object Detection on MS-COCO 2017

Faster R-CNN

modelStyleLr schdParams(M)FLOPs(G)box APAP_50AP_75
EPSANet-50(small)pytorch1x38.56197.0739.260.342.3
EPSANet-50(large)pytorch1x43.85219.6440.962.144.6

Mask R-CNN

modelStyleLr schdParams(M)FLOPs(G)box APAP_50AP_75
EPSANet-50(small)pytorch1x41.20248.5340.060.943.3
EPSANet-50(large)pytorch1x46.50271.1041.462.345.3

RetinaNet

modelStyleLr schdParams(M)FLOPs(G)box APAP_50AP_75
EPSANet-50(small)pytorch1x34.78229.3238.258.140.6
EPSANet-50(large)pytorch1x40.07251.8939.659.442.3

Instance segmentation with Mask R-CNN on MS-COCO 2017

modelParams(M)FLOPs(G)APAP_50AP_75
EPSANet-50(small)41.20248.5335.957.738.1
EPSANet-50(Large)46.50271.1037.159.039.5