Awesome
Llama3.java
Practical Llama 3, 3.1 and 3.2 inference implemented in a single Java file.
<p align="center"> <img width="700" src="https://github.com/user-attachments/assets/69bbf681-ae84-4a46-bcd6-746dbd421a6e"> </p>This project is the successor of llama2.java based on llama2.c by Andrej Karpathy and his excellent educational videos.
Besides the educational value, this project will be used to test and tune compiler optimizations and features on the JVM, particularly for the Graal compiler.
Features
- Single file, no dependencies
- GGUF format parser
- Llama 3 tokenizer based on minbpe
- Llama 3 inference with Grouped-Query Attention
- Support Llama 3.1 (ad-hoc RoPE scaling) and 3.2 (tie word embeddings)
- Support for Q8_0 and Q4_0 quantizations
- Fast matrix-vector multiplication routines for quantized tensors using Java's Vector API
- Simple CLI with
--chat
and--instruct
modes. - GraalVM's Native Image support (EA builds here)
- AOT model pre-loading for instant time-to-first-token
Interactive --chat
mode in action:
Practical LLM inference in modern Java
Presented at Devoxx Belgium, 2024
<div align="center"> <a href="https://www.youtube.com/watch?v=zgAMxC7lzkc"> <img src="https://img.youtube.com/vi/zgAMxC7lzkc/sddefault.jpg"> </a> </div>Setup
Download pure Q4_0
and (optionally) Q8_0
quantized .gguf files from:
- https://huggingface.co/mukel/Llama-3.2-1B-Instruct-GGUF
- https://huggingface.co/mukel/Llama-3.2-3B-Instruct-GGUF
- https://huggingface.co/mukel/Meta-Llama-3.1-8B-Instruct-GGUF
- https://huggingface.co/mukel/Meta-Llama-3-8B-Instruct-GGUF
The pure Q4_0
quantized models are recommended, except for the very small models (1B), please be gentle with huggingface.co servers:
# Llama 3.2 (3B)
curl -L -O https://huggingface.co/mukel/Llama-3.2-3B-Instruct-GGUF/resolve/main/Llama-3.2-3B-Instruct-Q4_0.gguf
# Llama 3.2 (1B)
curl -L -O https://huggingface.co/mukel/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q8_0.gguf
# Llama 3.1 (8B)
curl -L -O https://huggingface.co/mukel/Meta-Llama-3.1-8B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-Q4_0.gguf
# Llama 3 (8B)
curl -L -O https://huggingface.co/mukel/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf
# Optionally download the Q8_0 quantized models
# curl -L -O https://huggingface.co/mukel/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q8_0.gguf
# curl -L -O https://huggingface.co/mukel/Meta-Llama-3.1-8B-Instruct-GGUF/resolve/main/Meta-Llama-3.1-8B-Instruct-Q8_0.gguf
Optional: quantize to pure Q4_0
manually
In the wild, Q8_0
quantizations are fine, but Q4_0
quantizations are rarely pure e.g. the token_embd.weights
/output.weights
tensor are quantized with Q6_K
, instead of Q4_0
.
A pure Q4_0
quantization can be generated from a high precision (F32, F16, BFLOAT16) .gguf source
with the llama-quantize
utility from llama.cpp as follows:
./llama-quantize --pure ./Meta-Llama-3-8B-Instruct-F32.gguf ./Meta-Llama-3-8B-Instruct-Q4_0.gguf Q4_0
Build and run
Java 21+ is required, in particular the MemorySegment
mmap-ing feature.
jbang
is a perfect fit for this use case, just:
jbang Llama3.java --help
Or execute directly, also via jbang
:
chmod +x Llama3.java
./Llama3.java --help
Run from source
java --enable-preview --source 21 --add-modules jdk.incubator.vector LLama3.java -i --model Meta-Llama-3-8B-Instruct-Q4_0.gguf
Optional: Makefile + manually build and run
A simple Makefile is provided, run make
to produce llama3.jar
or manually:
javac -g --enable-preview -source 21 --add-modules jdk.incubator.vector -d target/classes Llama3.java
jar -cvfe llama3.jar com.llama4j.Llama3 LICENSE -C target/classes .
Run the resulting llama3.jar
as follows:
java --enable-preview --add-modules jdk.incubator.vector -jar llama3.jar --help
GraalVM Native Image
Compile to native via make
(recommended):
make native
Or directly:
native-image -H:+UnlockExperimentalVMOptions -H:+VectorAPISupport -H:+ForeignAPISupport -O3 -march=native --enable-preview --add-modules jdk.incubator.vector --initialize-at-build-time=com.llama4j.FloatTensor -Djdk.incubator.vector.VECTOR_ACCESS_OOB_CHECK=0 -jar llama3.jar -o llama3
Run as Native Image:
./llama3 --model Llama-3.2-1B-Instruct-Q8_0 --chat
AOT model preloading
Llama3.java
supports AOT model preloading, enabling 0-overhead, instant inference, with minimal TTFT (time-to-first-token).
To AOT pre-load a GGUF model:
PRELOAD_GGUF=/path/to/model.gguf make native
A specialized, larger binary will be generated, with no parsing overhead for that particular model. It can still run other models, although incurring the usual parsing overhead.
Performance
GraalVM now supports more Vector API operations. To give it a try, you need GraalVM for JDK 24 – get the EA builds from oracle-graalvm-ea-builds
or sdkman: sdk install java 24.ea.15-graal
.
llama.cpp
Vanilla llama.cpp
built with make
.
./llama-cli --version 130 ↵
version: 3862 (3f1ae2e3)
built with cc (GCC) 14.2.1 20240805 for x86_64-pc-linux-gnu
Executed as follows:
./llama-bench -m Llama-3.2-1B-Instruct-Q4_0.gguf -p 0 -n 128
Llama3.java
taskset -c 0-15 ./llama3 \
--model ./Llama-3-1B-Instruct-Q4_0.gguf \
--max-tokens 128 \
--seed 42 \
--stream false \
--prompt "Why is the sky blue?"
Hardware specs: 2019 AMD Ryzen 3950X 16C/32T 64GB (3800) Linux 6.6.47.
**Notes
Running on a single CCD e.g. taskset -c 0-15 ./llama3 ...
since inference is constrained by memory bandwidth.
Results
<p align="center"> <img src="https://github.com/user-attachments/assets/7f36f26a-6a78-46b7-9067-fcbe7717aa44"> </p>License
MIT