Home

Awesome

procket is an Erlang library for socket creation and manipulation.

procket can use a setuid helper so actions like binding low ports and requesting some sockets types can be done while Erlang is running as an unprivileged user.

FEATURES

Other features include:

REQUIREMENTS

procket works with any version of Erlang after R14A.

EXPORTS

DATA TYPES

protocol() = ip | icmp | tcp | udp | 'ipv6-icmp' | raw

type() = stream | dgram | raw | seqpacket

family() = unspec | inet | inet6 | netlink | packet | local | unix | file

Accessing Socket/Devices Requiring Elevated Privileges

open(Port) -> {ok, FD} | {error, posix()}
open(Port, Options) -> {ok, FD} | {error, posix()}

    Types   Port = 0..65535
            Options = [Opts]
            Opts = {protocol, Protocol} | {type, Type} | {family, Family}
                | {ip, IPAddress}
                | {dev, string()}
                | {exec, [string()]}
                | {progname, string()}
                | {interface, string()}
                | {pipe, string()}
                | {namespace, string()}
            Protocol = protocol() | integer()
            Type = type() | integer()
            Family = family() | integer()
            IPAddress = inet:ip_address()
            FD = integer()

    Open a socket or device using the procket setuid helper. The
    file descriptor is passed back over a Unix socket.

    The default behaviour of open/1,2 is to attempt to open the
    socket twice: first by running the procket setuid helper and, if this
    fails because the process does not have the appropriate permissions,
    running the setuid helper again using "sudo". The default behaviour
    can be changed by using the 'exec' option:

        procket:open(Port, [{exec, ["", "sudo"]}]).

    Linux only: the `{namespace, string()}` option causes the procket
    setuid helper to open the socket in a pre-configured namespace. By
    default, all namespaces are joined by the helper.

dev(Dev) -> {ok, FD} | {error, posix()}

    Types   Dev = string()

    Wrapper around open/2. Opens a character device such as bpf,
    tun or tap devices.

BSD Socket Interface

socket(Family, Type, Protocol) -> {ok, FD} | {error, posix()}

    Types   Family = family() | integer()
            Type = type() | integer()

    See socket(2).

listen(Socket) -> ok | {error, posix()}
listen(Socket, Backlog) -> ok | {error, posix()}

    Types   Socket = integer()
            Backlog = integer()

    See listen(2). listen/1 sets the backlog to 50.

connect(Socket, Sockaddr) -> ok | {error, posix()}

    Types   Socket = integer()
            Sockaddr = <<>> | binary()

    See connect(2).

    Sockaddr is a struct sockaddr whose layout is dependent on
    platform. If Sockaddr is an empty binary, connect(2) will be
    called with NULL as the second option.

accept(Socket) -> {ok, FD} | {error, posix()}
accept(Socket, Salen) -> {ok, FD, Sockaddr} | {error, posix()}

    Types   Socket = integer()
            Salen = 0 | non_neg_integer()
            Sockaddr = binary()

    See accept(2).

    accept/1 returns the file descriptor associated with the new
    connection.

    accept/2 will allocate a struct sockaddr of size Salen bytes
    that will hold the peer address. If the size is too small, the
    returned binary will be zero padded to indicate the size required.

close(Socket) -> ok | {error, posix()}

    Types   Socket = integer()

    See close(2).

recv(Socket, Size) -> {ok, Buf} | {error, posix()}
recvfrom(Socket, Size) -> {ok, Buf} | {error, posix()}
recvfrom(Socket, Size, Flags, Salen) -> {ok, Buf, Sockaddr}

    Types   Socket = integer()
            Size = ulong()
            Flags = integer()
            Salen = 0 | ulong()
            Buf = binary()
            Sockaddr = binary()

    See recv(2).

recvmsg(Socket, Size, Flags, CtrlDataSize) -> {ok, Buf, Flags, CtrlData} |
                                              {error, posix()}
recvmsg(Socket, Size, Flags, CtrlDataSize, SockaddrSize) -> {ok, Buf, Flags, CtrlData, Sockaddr} |
                                              {error, posix()}

    Types   Socket = integer()
            Size = ulong()
            CtrlDataSize = ulong()
            SockaddrSize = ulong()
            Flags = integer()
            Buf = binary()
            Sockaddr = binary()
            CtrlData = [{integer(), integer(), binary()}]

    See recvmsg(2) and cmsg(3).

    The control data, if any, is returned as a list of 3-tuples consisting of the cmsg
    level, type and data fields.

sendto(Socket, Buf) -> ok | {error, posix()}
sendto(Socket, Buf, Flags) -> ok | {error, posix()}
sendto(Socket, Buf, Flags, Sockaddr) -> ok | {ok, Size} | {error, posix()}

    Types   Socket = integer()
            Flags = integer()
            Buf = binary()
            Sockaddr = binary()
            Size = non_neg_integer()

    See sendto(2).

    In the case of a partial write, sendto/4 will return the number
    of bytes written.

sendmsg(Socket, Buf, Flags, CtrlData) -> ok | {error, posix()}
sendmsg(Socket, Buf, Flags, CtrlData, Sockaddr) -> ok | {ok, Size} | {error, posix()}

    Types   Socket = integer()
            Buf = binary()
            Flags = integer()
            CtrlData = [{integer(), integer(), binary()}]
            Sockaddr = binary()
            Size = non_neg_integer()

    See sendmsg(2) and cmsg(3).

    The control data, if any, is sent as a list of 3-tuples consisting of the cmsg
    level, type and data fields.

    In the case of a partial write, sendmsg/5 will return the number
    of bytes written.

read(FD, Length) -> {ok, Buf} | {error, posix()}

    Types   FD = integer()
            Length = ulong()
            Buf = binary()

    See read(2).

    The returned byte_size(Buf) is the actual number of bytes read.

write(FD, Buf) -> ok | {ok, Size} | {error, posix()}
writev(FD, Bufs) -> ok | {ok, Size} | {error, posix()}

    Types   FD = integer()
            Buf = Bufs | binary()
            Bufs = [ binary() ]
            Size = non_neg_integer()

    See write(2) and writev(2).

    write/2 and writev/2 will return 'ok' if the complete buffer was
    written and {ok,non_neg_integer()} in the case of a partial write:

        write_exact(FD, Buf) ->
            case procket:write(FD, Buf) of
                ok ->
                    ok;
                {ok, N} ->
                    <<_:N/bytes, Rest/binary>> = Buf,
                    write_exact(FD, Rest);
                Error ->
                    Error
            end.

bind(Socket, Sockaddr) -> ok | {error, posix()}

    Types   Socket = integer()
            Sockaddr = binary()

    See bind(2).

setsockopt(Socket, Level, Optname, Optval) -> ok | Error

    Types   Socket = integer()
            Level = integer() | atom()
            Optname = integer() | atom()
            Optval = binary()
            Error = {error, posix() | unsupported}

    See setsockopt(2).

    Level and Optname can either be an integer or an atom with the
    same name as the definitions in the system header files, e.g.,
    'IPPROTO_IPIP', 'SO_REUSEPORT'. Note these are uppercase atoms
    and so must be quoted.

    If an atom is used as an argument and is not supported by the OS,
    setsockopt/4 will return {error,unsupported}.

getsockopt(Socket, Level, Optname, Optval) -> {ok, Buf} | Error

    Types   Socket = integer()
            Level = integer() | atom()
            Optname = integer() | atom()
            Optval = binary()
            Buf = binary()
            Error = {error, posix() | unsupported}

    See getsockopt(2). Similar to inet:getopts/2 but can be used
    with file descriptors.

    Retrieve a socket option for a file descriptor. Use an empty
    binary to indicate no option value is supplied or will be
    returned.

    Also see setsockopt/4.

ioctl(FD, Request, Arg) -> {ok, Result} | {error, posix()}

    Types   FD = integer()
            Request = ulong()
            Arg = binary() | integer()

    See ioctl(2). Be careful with this function.

    Request is an integer with the direction of the request encoded
    into it (IN, OUT, IN/OUT). Result is a binary holding the result.
    If the ioctl is IN only, the Result will be the same as Arg.

    Arg is a structure dependent on the request.

    See procket_ioctl.erl for some helper functions for dealing
    with ioctl.

    Caveats:
        * Request is an integer on Linux and an unsigned long on OS X

        * some ioctl requests require a structure with a pointer to
          memory. Use alloc/1 to create these structures and buf/1 to
          retrieve the data from them.

        * some ioctl requests use an integer rather a pointer to
          a structure. This means that it's possible to pass in an
          arbitrary pointer (an integer) as an argument to an ioctl
          expecting a structure. Don't do this.

alloc(Struct) -> {ok, Arg, Resource} | {error, posix()}

    Types   Struct = [ binary | {ptr, Length} | {ptr, binary()} ]
            Arg = binary()
            Length = ulong()
            Resource = [resource()]

    Create a structure containing pointers to memory that can be
    passed as the third argument to ioctl/3.

    The size of the allocated memory can be indicated by either
    using an integer or passing in a binary of the appropriate size.
    If an integer is used, the contents are zero'ed. If a binary is
    used, the memory is initialized to the contents of the binary.

    Resource is a list of NIF resources (one for each piece of
    allocated memory) requested in the struct. The memory will
    automatically be freed by the resource.

    It is up to the caller to ensure the structure has the proper
    endianness and alignment for the platform.

    For example, a struct bpf_program is used to set a filter on a
    bpf character device:

        struct bpf_program {
            u_int bf_len;
            struct bpf_insn *bf_insns;
        };

        struct bpf_insn {
            u_short     code;
            u_char      jt;
            u_char      jf;
            bpf_u_int32 k;
        };

    To allocate a binary in Erlang:

        Insn = [
            ?BPF_STMT(?BPF_LD+?BPF_H+?BPF_ABS, 12),                     % offset = Ethernet Type
            ?BPF_JUMP(?BPF_JMP+?BPF_JEQ+?BPF_K, ?ETHERTYPE_IP, 0, 1),   % type = IP

            ?BPF_STMT(?BPF_RET+?BPF_K, 16#FFFFFFFF),                    % return: entire packet
            ?BPF_STMT(?BPF_RET+?BPF_K, 0)                               % return: drop packet
        ],
        {ok, Code, [Res]} = procket:alloc([
            <<(length(Insn)):4/native-unsigned-integer-unit:8>>,
            {ptr, list_to_binary(Insn)}
        ]).

    To use the ioctl and return the contents of the memory:

        case procket:ioctl(Socket, ?BIOCSETF, Code) of
            {ok, _} ->
                procket:buf(Res);
            Error ->
                Error
        end.

buf(Resource) -> {ok, Buf} | {error, enomem}

    Types   Resource = resource()
            Buf = binary()

    Returns the contents of memory allocated using alloc/1. See the
    example above.

COMPILING

Try running: make

SETUID vs SUDO vs Capabilities

The procket helper executable needs root privileges. Either allow your user to run procket using sudo or copy procket to somewhere owned by root and make it setuid.

USING IT

$ erl -pa ebin
Erlang R13B03 (erts-5.7.4) [source] [rq:1] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.7.4  (abort with ^G)
1> {ok, FD} = procket:open(53, [{protocol, udp},{type, dgram},{family, inet}]).
{ok,9}
2> {ok, S} = gen_udp:open(0, [{fd,FD}]).
{ok,#Port<0.929>}
3> receive M -> M end.
{udp,#Port<0.929>,{127,0,0,1},47483,"hello\n"}
4>

$ nc -u localhost 53
hello
^C

EXAMPLES

To build the examples:

make examples

Simple echo server

$ erl -pa ebin
1> echo:start(53, [{protocol, tcp}, {type, stream}, {family, inet6}]).

ICMP ping

1> icmp:ping("www.yahoo.com").

Sniff the network

1> {ok, S} = procket:open(0, [{protocol, 16#0008}, {type, raw}, {family, packet}]).
{ok,12}
2> procket:recvfrom(S, 2048).
{ok,<<0,21,175,89,8,38,0,3,82,3,39,36,8,0,69,0,0,52,242,
          0,0,0,52,6,188,81,209,...>>}
3> Port = erlang:open_port({fd, S, S}, [binary, stream]).
4> flush().
Shell got {#Port<0.1343>,
          {data,<<224,105,149,59,163>>}}

Bind to one or more interfaces

1> procket:open(53, [{progname, "sudo priv/procket"},{protocol, udp},{type,dgram},{interface, "br0"}]).
{ok,9}
2> procket:open(53, [{progname, "sudo priv/procket"},{protocol, udp},{type,dgram},{interface, "br1"}]).
{ok,10}

HOW IT WORKS

procket creates a local domain socket and spawns a small setuid binary (or runs it under sudo). The executable opens a socket, drops privs and passes the file descriptor back to Erlang over the Unix socket.

procket uses libancillary for passing file descriptors between processes:

http://www.normalesup.org/~george/comp/libancillary/

TODO

CONTRIBUTORS

Magnus Klaar

Gregory Haskins

Roman Gafiyatullin

Kenji Rikitake

YAMAMOTO Takashi