Awesome
scala-synapses
A plug-and-play library for neural networks written in Scala 3!
Basic usage
Install synapses
libraryDependencies += "com.github.mrdimosthenis" %% "synapses" % "8.0.0"
Import the Net
object
import synapses.lib.Net
Create a random neural network by providing its layer sizes
val randNet = Net(List(2, 3, 1))
- Input layer: the first layer of the network has 2 nodes.
- Hidden layer: the second layer has 3 neurons.
- Output layer: the third layer has 1 neuron.
Get the json of the random neural network
randNet.json()
// res0: String = """[
// [{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]},
// {"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]},
// {"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}],
// [{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}]
// ]"""
Create a neural network by providing its json
val net = Net("""[
[{"activationF" : "sigmoid", "weights" : [-0.5,0.1,0.8]},
{"activationF" : "sigmoid", "weights" : [0.7,0.6,-0.1]},
{"activationF" : "sigmoid", "weights" : [-0.8,-0.1,-0.7]}],
[{"activationF" : "sigmoid", "weights" : [0.5,-0.3,-0.4,-0.5]}]
]""")
Make a prediction
net.predict(List(0.2, 0.6))
// res1: List[Double] = List(0.49131100324012494)
Train a neural network
net.fit(
learningRate = 0.1,
inputValues = List(0.2, 0.6),
expectedOutput = List(0.9)
)
The fit
method returns the neural network with its weights adjusted to a single observation.
Advanced usage
Fully train a neural network
In practice, for a neural network to be fully trained, it should be fitted with multiple observations, usually by folding over an iterator.
Iterator(
(List(0.2, 0.6), List(0.9)),
(List(0.1, 0.8), List(0.2)),
(List(0.5, 0.4), List(0.6))
).foldLeft(net){ case (acc, (xs, ys)) =>
acc.fit(learningRate = 0.1, xs, ys)
}
Boost the performance
Every function is efficient because its implementation is based on lazy list and all information is obtained at a single pass.
For a neural network that has huge layers, the performance can be further improved
by using the parallel counterparts of predict
and fit
(parPredict
and parFit
).
Create a neural network for testing
Net(layerSizes = List(2, 3, 1), seed = 1000)
We can provide a seed
to create a non-random neural network.
This way, we can use it for testing.
Define the activation functions and the weights
import scala.util.Random
import synapses.lib.Fun
def activationF(layerIndex: Int): Fun =
layerIndex match
case 0 => Fun.sigmoid
case 1 => Fun.identity
case 2 => Fun.leakyReLU
case 3 => Fun.tanh
def weightInitF(layerIndex: Int): Double =
(layerIndex + 1) * (1.0 - 2.0 * Random().nextDouble())
val customNet = Net(layerSizes = List(4, 6, 8, 5, 3), activationF, weightInitF)
- The
activationF
function accepts the index of a layer and returns an activation function for its neurons. - The
weightInitF
function accepts the index of a layer and returns a weight for the synapses of its neurons.
If we don't provide these functions, the activation function of all neurons is sigmoid, and the weight distribution of the synapses is normal between -1.0 and 1.0.
Draw a neural network
customNet.svg()
With its svg drawing, we can see what a neural network looks like. The color of each neuron depends on its activation function while the transparency of the synapses depends on their weight.
Measure the difference between the expected and predicted values
import synapses.lib.Stats
def expAndPredVals() =
Iterator(
(List(0.0, 0.0, 1.0), List(0.0, 0.1, 0.9)),
(List(0.0, 1.0, 0.0), List(0.8, 0.2, 0.0)),
(List(1.0, 0.0, 0.0), List(0.7, 0.1, 0.2)),
(List(1.0, 0.0, 0.0), List(0.3, 0.3, 0.4)),
(List(0.0, 0.0, 1.0), List(0.2, 0.2, 0.6))
)
- Root-mean-square error
Stats.rmse(expAndPredVals())
// res6: Double = 0.6957010852370435
- Classification accuracy score
Stats.score(expAndPredVals())
// res7: Double = 0.6
Import the Codec
object
import synapses.lib.Codec
- One hot encoding is a process that turns discrete attributes into a list of 0.0 and 1.0.
- Minmax normalization scales continuous attributes into values between 0.0 and 1.0.
val setosa = Map(
"petal_length" -> "1.5",
"petal_width" -> "0.1",
"sepal_length" -> "4.9",
"sepal_width" -> "3.1",
"species" -> "setosa"
)
val versicolor = Map(
"petal_length" -> "3.8",
"petal_width" -> "1.1",
"sepal_length" -> "5.5",
"sepal_width" -> "2.4",
"species" -> "versicolor"
)
val virginica = Map(
"petal_length" -> "6.0",
"petal_width" -> "2.2",
"sepal_length" -> "5.0",
"sepal_width" -> "1.5",
"species" -> "virginica"
)
def dataset() = Iterator(setosa,versicolor,virginica)
You can use a Codec
to encode and decode a data point.
Create a Codec
by providing the attributes and the data points
val codec = Codec(
List(("petal_length", false),
("petal_width", false),
("sepal_length", false),
("sepal_width", false),
("species", true)),
dataset()
)
- The first parameter is a list of pairs that define the name and the type (discrete or not) of each attribute.
- The second parameter is an iterator that contains the data points.
Get the json of the codec
val codecJson = codec.json()
// codecJson: String = """[
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "petal_length","min" : 1.5,"max" : 6.0}]},
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "petal_width","min" : 0.1,"max" : 2.2}]},
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "sepal_length","min" : 4.9,"max" : 5.5}]},
// {"Case" : "SerializableContinuous",
// "Fields" : [{"key" : "sepal_width","min" : 1.5,"max" : 3.1}]},
// {"Case" : "SerializableDiscrete",
// "Fields" : [{"key" : "species","values" : ["virginica","versicolor","setosa"]}]}
// ]"""
Create a codec by providing its json
Codec(codecJson)
Encode a data point
val encodedSetosa = codec.encode(setosa)
// encodedSetosa: List[Double] = List(0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0)
Decode a data point
codec.decode(encodedSetosa)
// res9: Map[String, String] = HashMap(
// "species" -> "setosa",
// "sepal_width" -> "3.1",
// "petal_width" -> "0.1",
// "petal_length" -> "1.5",
// "sepal_length" -> "4.9"
// )