Home

Awesome

Streaming Indicators

A python library for computing technical analysis indicators on streaming data.

Installation

pip install streaming-indicators

Why another TA library?

There are many other technical analysis python packages, most notably ta-lib, then why another library?
All other libraries work on static data, you can not add values to any indicator. But in real-time trading system, price values (ticks/candles) keeps streaming, and indicators should update on real-time. This library is for that purpose.

Usage

Each indicator is a class, and is statefull. It will have 3 main functions:

  1. Constructor: initialise all parameters such as period.
  2. update: To add new data point in the indicator computation. Returns the new value of the indicator.
  3. compute: Compute indicator value with a new data point, but don't update it's state. This is useful in some cases, for example, compute indictor on ltp, but don't update it.

List of indicators (and usage)

import streaming_indicators as si

period = 14
SMA = si.SMA(period)
for idx, candle in candles.iterrows():
    sma = SMA.update(candle['close'])
    print(sma)
period = 14
EMA = si.EMA(period)
for idx, candle in candles.iterrows():
    ema = EMA.update(candle['close'])
    print(ema)
VWAP = si.VWAP()
for idx, candle in candles.iterrows():
    vwap = VWAP.update(candle)
    print(vwap)
period = 14
RSI = si.RSI(period)
for idx, candle in candles.iterrows():
    rsi = RSI.update(candle['close'])
    print(rsi)
atr_period = 20
ATR = si.ATR(atr_period)
for idx, candle in candles.iterrows():
    atr = ATR.update(candle)  # Assumes candle to have 'open',high','low','close' - TODO: give multiple inputs to update.
    print(atr)
st_atr_length = 10
st_factor = 3
ST = si.SuperTrend(st_atr_length, st_factor)
for idx, candle in candles.iterrows():
    st = ST.update(candle)
    print(st) # (st_direction:1/-1, band_value)

To use some historical candles to initiate, use: ST = si.SuperTrend(st_atr_length, st_factor, candles=initial_candles) where initial_candles is pandas dataframe with open,high,low,close columns, and requires talib package.

HA = si.HeikinAshi()
for idx, candle in candles.iterrows():
    ha_candle = HA.update(candle)
    print(ha_candle) # {'close': float, 'open': float, 'high': float, 'low': float}
# For fixed brick size
brick_size = 20
Renko = si.Renko()
for idx, candle in candles.iterrows():
    bricks = Renko.update(candle['close'], brick_size)
    print(bricks) # [{'direction': 1/-1, 'brick_num': int, 'wick_size': float, 'brick_size': float, 'brick_end_price': float, 'price': float}, {}]: list of bricks formed after this candle
# For brick size using ATR
atr_period = 20
ATR = si.ATR(atr_period)
Renko = si.Renko()
for idx, candle in candles.iterrows():
    atr = ATR.update(candle)
    print(atr)
    bricks = Renko.update(candle['close'], atr)
    print(bricks)
period = 10
all_increasing = si.IsOrder('>', period)
for idx, candle in candles.iterrows():
    is_increasing = all_increasing.update(candle['close'])
    print(is_increasing) # True/False
HT = si.HalfTrend(amplitude=2, channel_deviation=2, atr_period=100)
for idx, candle in candles.iterrows():
    trend, half_trend, up, down, atr_high, atr_low = HT.update(candle)
CWA2Sigma = si.CWA2Sigma(bb_period=50, bb_width=2, ema_period=100, atr_period=14, atr_factor=1.8, sl_perc=20)
for idx, candle in candles.iterrows():
    cwa_signal,cwa_entry_price = CWA2Sigma.update(candle)

Changelogs and TODOs

If you find this repo useful, do consider giving a star. Contributions are most welcome.