Awesome
UNetLSTM
Code of the following manuscript:
'Detecting Urban Changes With Recurrent Neural Networks From Multitemporal Sentinel-2 Data'
https://arxiv.org/abs/1910.07778
Steps
-
Preprocessing with preprocess.py
Create a folder (e.g 'Images') of the raw data with the following structure:
/ Images / city / imgs_i / (13 tif 2D images of sentinel channels)
where i=[1,2,3,4,5]
and city = ['abudhabi', 'aguasclaras', 'beihai', 'beirut', 'bercy', 'bordeaux', 'brasilia', 'chongqing', 'cupertino', 'dubai', 'hongkong', 'lasvegas', 'milano', 'montpellier', 'mumbai', 'nantes', 'norcia', 'paris', 'pisa', 'rennes', 'rio', 'saclay_e', 'saclay_w', 'valencia']
For example, if you have 5 dates for each city, each folder should look like this (e.g for abudhabi):
mariapap@pikolo2:~/DATA/Images/abudhabi$ ls imgs_1 imgs_2 imgs_3 imgs_4 imgs_5
where imgs_i are the subfolders with the 13 available channels for every city. Use preprocess.py to preprocess these images.
In the end, each preprocessed city folder should look like this:
mariapap@pikolo2:~/DATA/Preprocessed_Images/abudhabi$ ls abudhabi_1.npy abudhabi_2.npy abudhabi_3.npy abudhabi_4.npy abudhabi_5.npy
-
Create csv files with (x,y) locations for patch extraction during the training and validation process using make_xys.py Here you need to specify the folder with the OSCD dataset's Labels. The csv files will be saved in a folder named 'xys'. Also, inside the make_xys.py script there is a list containing the names of the training cities.
train_areas = ['abudhabi', 'beihai', 'aguasclaras', 'beirut', 'bercy', 'bordeaux', 'cupertino', 'hongkong', 'mumbai', 'nantes', 'rennes', 'saclay_e', 'pisa', 'rennes']
-
Start the training process with main.py
Note that 'train_areas' list should be defined in the same sequence as in make_xys.py script
-
Make predictions on the OSCD dataset's testing images with inference.py
Comments are included in the scripts for further instructions.
If you find this work useful, please consider citing:
M.Papadomanolaki, Sagar Verma, M. Vakalopoulou, S. Gupta, K., 'Detecting Urban Changes With Recurrent Neural Networks From Multitemporal Sentinel-2 Data', IGARSS 2019, Yokohama, Japan