Home

Awesome

PWC

PWC

PWC

PWC

HM: Hybrid Masking for Few-Shot Segmentation (ECCV 2022)

The paper is on [arXiv].

<p align="middle"> <img src="figure/main_fig2.png" width="600" height="350" /> </p>

Scripts

This work can be implemented very easily by using the below script. The below script needs to be added to the HSNet, VAT and ASNet.

        supprot_img_im = torch.zeros_like(support_img)            
        supprot_img_im[:,0,:,:]= support_img[:,0,:,:]*support_mask 
        supprot_img_im[:,1,:,:]= support_img[:,1,:,:]*support_mask  
        supprot_img_im[:,2,:,:]= support_img[:,2,:,:]*support_mask  

        Feature_masking = self.extract_feats(support_img, self.backbone, self.feat_ids, self.bottleneck_ids, self.lids)
        Input_masking = self.extract_feats(supprot_img_im, self.backbone, self.feat_ids, self.bottleneck_ids, self.lids)

        Feature_masking = self.mask_feature(Feature_masking, support_mask.clone())

        for i in range(len(Feature_masking)):
            s_r = torch.where(Feature_masking[i]>0, Feature_masking[i],  Input_masking[i] )
            Feature_masking[i] = s_r
            
            
        query_feats = self.resize_feats(query_feats, self.stack_ids)           
        Hybrid_masking = self.resize_feats(Feature_masking, self.stack_ids)

For your convenience, we provide example files for HSNet, VAT and ASNet.

Evaluation

Follow the testing directions for each method and use the pre-trained models with the above script.

HSNet-HM Link

VAT-HM Link

ASNet-HM Link

Performance

Visualization

<p align="middle"> <img src="figure/comparison.png" width="600" height="350" /> </p>

References

Our work is based on these models. (HSNet, VAT, and ASNet)

Thank you very much.

BibTeX

If you find this research useful, please consider citing:

@misc{moon2022hm,
      title={HM: Hybrid Masking for Few-Shot Segmentation}, 
      author={Seonghyeon Moon and Samuel S. Sohn and Honglu Zhou and Sejong Yoon and Vladimir Pavlovic and Muhammad Haris Khan and Mubbasir Kapadia},
      year={2022},
      eprint={2203.12826},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}