Awesome
JointBERT
(Unofficial) Pytorch implementation of JointBERT
: BERT for Joint Intent Classification and Slot Filling
Model Architecture
<p float="left" align="center">
<img width="600" src="https://user-images.githubusercontent.com/28896432/68875755-b2f92900-0746-11ea-8819-401d60e4185f.png" />
</p>
- Predict
intent
and slot
at the same time from one BERT model (=Joint model)
- total_loss = intent_loss + coef * slot_loss (Change coef with
--slot_loss_coef
option)
- If you want to use CRF layer, give
--use_crf
option
Dependencies
- python>=3.6
- torch==1.6.0
- transformers==3.0.2
- seqeval==0.0.12
- pytorch-crf==0.7.2
Dataset
| Train | Dev | Test | Intent Labels | Slot Labels |
---|
ATIS | 4,478 | 500 | 893 | 21 | 120 |
Snips | 13,084 | 700 | 700 | 7 | 72 |
- The number of labels are based on the train dataset.
- Add
UNK
for labels (For intent and slot labels which are only shown in dev and test dataset)
- Add
PAD
for slot label
Training & Evaluation
$ python3 main.py --task {task_name} \
--model_type {model_type} \
--model_dir {model_dir_name} \
--do_train --do_eval \
--use_crf
# For ATIS
$ python3 main.py --task atis \
--model_type bert \
--model_dir atis_model \
--do_train --do_eval
# For Snips
$ python3 main.py --task snips \
--model_type bert \
--model_dir snips_model \
--do_train --do_eval
Prediction
$ python3 predict.py --input_file {INPUT_FILE_PATH} --output_file {OUTPUT_FILE_PATH} --model_dir {SAVED_CKPT_PATH}
Results
- Run 5 ~ 10 epochs (Record the best result)
- Only test with
uncased
model
- ALBERT xxlarge sometimes can't converge well for slot prediction.
| | Intent acc (%) | Slot F1 (%) | Sentence acc (%) |
---|
Snips | BERT | 99.14 | 96.90 | 93.00 |
| BERT + CRF | 98.57 | 97.24 | 93.57 |
| DistilBERT | 98.00 | 96.10 | 91.00 |
| DistilBERT + CRF | 98.57 | 96.46 | 91.85 |
| ALBERT | 98.43 | 97.16 | 93.29 |
| ALBERT + CRF | 99.00 | 96.55 | 92.57 |
ATIS | BERT | 97.87 | 95.59 | 88.24 |
| BERT + CRF | 97.98 | 95.93 | 88.58 |
| DistilBERT | 97.76 | 95.50 | 87.68 |
| DistilBERT + CRF | 97.65 | 95.89 | 88.24 |
| ALBERT | 97.64 | 95.78 | 88.13 |
| ALBERT + CRF | 97.42 | 96.32 | 88.69 |
Updates
- 2019/12/03: Add DistilBert and RoBERTa result
- 2019/12/14: Add Albert (large v1) result
- 2019/12/22: Available to predict sentences
- 2019/12/26: Add Albert (xxlarge v1) result
- 2019/12/29: Add CRF option
- 2019/12/30: Available to check
sentence-level semantic frame accuracy
- 2020/01/23: Only show the result related with uncased model
- 2020/04/03: Update with new prediction code
References