Home

Awesome

PyTorch Project Template is being sponsored by the following tool; please help to support us by taking a look and signing up to a free trial

<img src="https://images.gitads.io/Pytorch-Project-Template" alt=“GitAds”/>

PyTorch Project Template

Implement your PyTorch projects the smart way.

A Scalable template for PyTorch projects, with examples in Image Segmentation, Object classification, GANs and Reinforcement Learning.

Given the nature of deep learning projects, we do not get the chance to think much about the project structure or the code modularity. After working with different deep learning projects and facing problems with files organization and code repetition, we came up with a modular project structure to accommodate any PyTorch project. We also wanted to provide a base for different PyTorch models for the community to build upon.

This is a joint work between Hager Rady and Mo'men AbdelRazek

Table of Contents:

<!-- Table of contents generated generated by http://tableofcontent.eu -->

Why this template?

We are proposing a baseline for any PyTorch project to give you a quick start, where you will get the time to focus on your model's implementation and we will handle the rest. The novelty of this approach lies in:

Tutorials:

We are providing a series of tutorials to get your started

Contribution:

Template Class Diagram:

alt text

Referenced Repos:

  1. ERFNet: A model for Semantic Segmentation, trained on Pascal Voc
  2. DCGAN: Deep Convolutional Generative Adverserial Networks, run on CelebA dataset.
  3. CondenseNet: A model for Image Classification, trained on Cifar10 dataset
  4. DQN: Deep Q Network model, a Reinforcement Learning example, tested on CartPole-V0
  5. RecAE: Recurrent neural networks based autoencoder for Time series anomaly detection, run on ECG5000 dataset

Repos Migration Summary:

  1. We started by DCGAN, adding its custom configs into the json file. DCGAN has both generator and discriminator model so it doesn't have a single model file.
  2. Then, we added CondenseNet, where it was necessary to create a custom blocks folder inside the models folder to include the definitions for custom layers within the model.
  3. After that, we added the DQN project, where all the classes related to the environment have been added to the utils. We also added the action selection and model optimization into the training agent.
  4. ERFNet was the last example to join the template; agent, model and utils have been added to their folders with no conflicts.

This is to ensure that our proposed project structure is compatible with different problems and can handle all the variations related to any of them.

Repo Structure:

After adding all our examples, the repo has the following structure:

├── agents
|  └── dcgan.py
|  └── condensenet.py
|  └── mnist.py
|  └── dqn.py
|  └── example.py
|  └── base.py
|  └── erfnet.py
|
├── configs
|  └── dcgan_exp_0.py
|  └── condensenet_exp_0.py
|  └── mnist_exp_0.py
|  └── dqn_exp_0.py
|  └── example_exp_0.py
|  └── erfnet_exp_0.py
|
├── data
|
├── datasets
|  └── cifar10.py
|  └── celebA.py
|  └── mnist.py
|  └── example.py
|  └── voc2012.py
|
├── experiments
|
├── graphs
|  └── models
|  |  └── custome_layers
|  |  |  └── denseblock.py
|  |  |  └── layers.py
|  |  |
|  |  └── dcgan_discriminator.py
|  |  └── dcgan_generator.py
|  |  └── erfnet.py
|  |  └── erfnet_imagenet.py
|  |  └── condensenet.py
|  |  └── mnist.py
|  |  └── dqn.py
|  |  └── example.py
|  |
|  └── losses
|  |  └── loss.py
|
├── pretrained_weights
|
├── tutorials
|
├── utils
|  └── assets
|
├── main.py
└── run.sh

Requirements:

easydict==1.7
graphviz==0.8.4
gym==0.10.5
imageio==2.3.0
matplotlib==2.2.2
numpy==1.14.5
Pillow==5.2.0
scikit-image==0.14.0
scikit-learn==0.19.1
scipy==1.1.0
tensorboardX==1.2
torch==0.4.0
torchvision==0.2.1
tqdm==4.23.4

Future Work:

We are planning to add more examples into our template to include various categories of problems. Next we are going to include the following:

License:

This project is licensed under MIT License - see the LICENSE file for details