Home

Awesome

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations

This repository is the implementation of PointWOLF.

Sihyeon Kim<sup>1*</sup>, Sanghyeok Lee<sup>1*</sup>, Dasol Hwang<sup>1</sup>, Jaewon Lee<sup>1</sup>, Seong Jae Hwang<sup>2</sup>, Hyunwoo J. Kim<sup>1†</sup>, Point Cloud Augmentation with Weighted Local Transformations (ICCV 2021).
<sup>1</sup>Korea University <sup>2</sup>University of Pittsburgh

PointWOLF_main

Installation

Dependencies

Download

Clone repository

$ git clone https://github.com/mlvlab/PointWOLF.git

Download ModelNet40

Notes : When you run the main.py, ModelNet40 is automatically downloaded at .../PointWOLF/data/.
If you want to download dataset on your ${PATH}, see below.

$ cd ${PATH}
$ wget https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip --no-check-certificate
$ unzip modelnet40_ply_hdf5_2048.zip
$ rm modelnet40_ply_hdf5_2048.zip

Runnig the code

train

$ python main.py --exp_name=origin --model=dgcnn --num_points=1024 --k=20 --use_sgd=True
$ python main.py --exp_name=PointWOLF --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --PointWOLF
$ python main.py --exp_name=PointWOLF_AugTune --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --PointWOLF --AugTune

eval

$ python main.py --exp_name=eval --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --eval=True --model_path=${PATH}

Citation

@InProceedings{Kim_2021_ICCV,
    author    = {Kim, Sihyeon and Lee, Sanghyeok and Hwang, Dasol and Lee, Jaewon and Hwang, Seong Jae and Kim, Hyunwoo J.},
    title     = {Point Cloud Augmentation With Weighted Local Transformations},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {548-557}
}

License

MIT License

Acknowledgement

The structure of this codebase is borrowed from DGCNN.