Home

Awesome

MELTR: Meta Loss Transformer for Learning to Fine-tune Video Foundation Models

This is the official implementation of MELTR (CVPR 2023). (arxiv)

Dohwan Ko<sup>1*</sup>, Joonmyung Choi<sup>1*</sup>, Hyeong Kyu Choi<sup>1</sup>, Kyoung-Woon On<sup>2</sup>, Byungseok Roh<sup>2</sup>, Hyunwoo J. Kim<sup>1</sup>.

<sup>1</sup>Korea University <sup>2</sup>Kakao Brain

<div align="center"> <img src="asset/main.png" width="900px" /> </div>

Code Repositories

Citation

@inproceedings{ko2023meltr,
  title={MELTR: Meta Loss Transformer for Learning to Fine-tune Video Foundation Models},
  author={Ko, Dohwan and Choi, Joonmyung and Choi, Hyeong Kyu and On, Kyoung-Woon and Roh, Byungseok and Kim, Hyunwoo J},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2023}
}