Home

Awesome

Visual-Selective-VIO (ECCV 2022)

This repository contains the codes for Efficient Deep Visual and Inertial Odometry with Adaptive Visual Modality Selection (ECCV '22).

<img src="figures/figure.png" alt="overview" width="700"/>

Data Preparation

The code in this repository is tested on KITTI Odometry dataset. The IMU data after pre-processing is provided under data/imus. To download the images and poses, please run

  $cd data
  $source data_prep.sh 

IMU data format

The IMU data has 6 dimentions:

  1. acceleration in x, i.e. in direction of vehicle front (m/s^2)
  2. acceleration in y, i.e. in direction of vehicle left (m/s^2)
  3. acceleration in z, i.e. in direction of vehicle top (m/s^2)
  4. angular rate around x (rad/s)
  5. angular rate around y (rad/s)
  6. angular rate around z (rad/s)

Download pretrainined models

We provide two pretrained checkpoints vf_512_if_256_3e-05.model and vf_512_if_256_5e-05.model and two pretrained FlowNet models in Link. Please download them and place them under pretrain_models directory.

Test the pretrained model

Example command:

  python test.py --data_dir './data' --model './pretrain_models/vf_512_if_256_5e-05.model' --gpu_ids '0' --experiment_name 'pretrained'

The figures and error records will be generated under ./results/pretrained/files The estimated path (left), speed heatmap (middle) and decision heatmap (right) for path 07 is shown below:

<img src="figures/07_path_2d.png" alt="path" height="230"/> <img src="figures/07_decision_smoothed.png" alt="path" height="230"/> <img src="figures/07_speed.png" alt="path" height="230"/>

Reference

Mingyu Yang, Yu Chen, Hun-Seok Kim, "Efficient Deep Visual and Inertial Odometry with Adaptive Visual Modality Selection"

@article{yang2022efficient,
  title={Efficient Deep Visual and Inertial Odometry with Adaptive Visual Modality Selection},
  author={Yang, Mingyu and Chen, Yu and Kim, Hun-Seok},
  journal={arXiv preprint arXiv:2205.06187},
  year={2022}
}