Home

Awesome

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021)

by Qiming Hu, Xiaojie Guo.

Dependencies

Network Architecture

figure_arch

:rocket: 1. Single Image Reflection Separation

Data Preparation

Training dataset

Testing dataset

Usage

Training

Testing

python test_sirs.py --inet ytmt_ucs_old --model twostage_ytmt_model --name ytmt_uct_sirs_test --hyper --if_align --resume --icnn_path ./checkpoints/ytmt_uct_sirs/ytmt_uct_sirs_68_077_00595364.pt

Note: "ytmt_ucs_old" is only for our provided checkpoint, and please change it as "ytmt_ucs" when you train our model by yourself, since it is a refactorized verison for a better view.

Trained weights

Google Drive

Visual comparison on real20 and SIR^2

figure_eval

Visual comparison on real45

figure_test

:rocket: 2. Single Image Denoising

Data Preparation

Training datasets

400 images from the Berkeley segmentation dataset, following DnCNN.

Tesing datasets

BSD68 dataset and Set12.

Usage

Training

python train_denoising.py --inet ytmt_pas --name ytmt_pas_denoising --preprocess True --num_of_layers 9 --mode B --preprocess True

Testing

python test_denoising.py --inet ytmt_pas --name ytmt_pas_denoising_blindtest_25 --test_noiseL 25 --num_of_layers 9 --test_data Set68 --icnn_path ./checkpoints/ytmt_pas_denoising_49_157500.pt

Trained weights

Google Drive

Visual comparison on a sample from BSD68

figure_eval_denoising

:rocket: 3. Single Image Demoireing

Data Preparation

Training dataset

AIM 2019 Demoireing Challenge

Tesing dataset

100 moireing and clean pairs from AIM 2019 Demoireing Challenge.

Usage

Training

python train_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire --hyper --if_align

Testing

python test_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire_test --hyper --if_align --resume --icnn_path ./checkpoints/ytmt_ucs_demoire/ytmt_ucs_opt_086_00860000.pt

Trained weights

Google Drive

Visual comparison on the validation set of LCDMoire

figure_eval_demoire

:rocket: 4. Intrinsic Image Decomposition

Data Preparation

MIT-intrinsic dataset, pre-processed following Direct Intrinsics

Usage

Trained weights

Google Drive

Visual comparison on the validation split of MIT-Intrinsic

figure_eval_intrinsic

Training

python train_intrinsic.py --inet ytmt_ucs --model ytmt_model_intrinsic_decomp --name ytmt_ucs_intrinsic

Testing

python test_intrinsic.py --inet ytmt_ucs --model ytmt_model_intrinsic_decomp --name ytmt_ucs_intrinsic --resume --icnn_path [Path to your weight]