Home

Awesome

UCAS-AOD-benchmark

A benchmark of UCAS-AOD dataset. (Only Oriented box is tested)

To be continued...

Introduction

There is no official division of the UCAS-AOD dataset, thus it's troublesome to compare the performance on different models. You can directly make comparison with our test results if you adopt the same division strategy.

Dataset repare

  1. Download UCAS-AOD dataset .
  2. Unzip dataset package into your root_dir, and rename the folder to UCAS_AOD.
  3. Put our imageset files train.txt, val.txt and test.txt into ImageSets folder in UCAS_AOD.
  4. Run data_prepare.py (modify the dataset dir to your own), and you will obtain directory as follow:
UCAS_AOD
└───AllImages
│   │   P0001.png
│   │   P0002.png
│   │	...
│   └───P1510.png
└───Annotations
│   │   P0001.txt
│   │   P0002.txt
│   │	...
│   └───P1510.txt       
└───ImageSets 
│   │   train.txt
│   │   val.txt
│   └───test.txt  
└───Test
│   │   P0003.png
│   │	...
│   └───P1508.txt 
└───CAR
└───PLANE
└───Neg
  1. Train, eval and test you model according to ImageSets settings.

notes: The integrated dataset contains 1510 images, with train set 755, val set 302, test set 452(following DOTA division 5:2:3). Files are numbered from 1-1510, in which 1-510 are cars, 511-1510 are airplanes. Besides, classname is attached to label file in format of classname x1 y1 x2 y2 x3 y3 x4 y4 theta lx ly w h ,

for example:

car  2.763971e+02	9.125021e+01	2.911375e+02	3.823406e+01	3.308891e+02	4.928647e+01	3.161486e+02	1.023026e+02	1.055379e+02	2.787673e+02	3.876027e+01	4.975157e+01	6.301615e+01	
car  3.002141e+02	1.003123e+02	3.209637e+02	4.665470e+01	3.566901e+02	6.047021e+01	3.359405e+02	1.141279e+02	1.111416e+02	3.055889e+02	4.856245e+01	4.572642e+01	6.365764e+01	
...

Experiment

Environment

Details

Benchmark

modelbackboneinput_sizenacarairplanemAPpaper linkcode
R-Yolov3Darknet53800*800974.6389.5282.08arxivcode1, code2
R-RetinaNetResNet50800*800384.6490.5187.57ICCV 2017code
Faster RCNNResNet50800*800386.8789.8688.36CVPR 2018code
RoI TransformerResNet50800*800388.0290.0289.02CVPR 2019code
RIDet-QResNet50800*800988.5089.9689.23GRSLcode
SLAResNet50800*800988.5790.3089.44RScode
CFC-NetResNet50800*800189.2988.6989.49TGRScode
TIOE-DetResNet50800*800988.8390.1589.49ISPRS&RS2023pytorch
RIDet-OResNet50800*800988.8890.3589.62GRSLcode
DALResNet50800*800389.2590.4989.87AAAI 2021code
S2ANetResNet50800*800189.5690.4289.99TGRScode

Some Results

car

airplane


Notes : More results and PRs are welcomed if you test with imagesets division here.