Awesome
This project hosts the official implementation for the paper:
Deep Dive into Gradients: Better Optimization for 3D Object Detection with Gradient-Corrected IoU Supervision [PDF][BibTex]
( accepted by CVPR 2023).
Setup
pip install spconv-cu111
pip install Cmake
pip install -r requirement.txt
pip install mayavi
python setup.py develop
cd pcdet/ops/iou3d/cuda_op
python setup.py install
Training
- Data Prepare Download KITTI and organize it into the following form:
├── data
│ ├── kitti
│ │ │── ImageSets
│ │ │── training
│ │ │ ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│ │ │── testing
│ │ │ ├──calib & velodyne & image_2
- Generatedata infos:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml
- Creat
.yaml
file - Training the model via
python tools/train.py
Visualizations
Citation
If you find our work or code useful in your research, please consider citing:
@inproceedings{ming2023deep,
title={Deep Dive Into Gradients: Better Optimization for 3D Object Detection With Gradient-Corrected IoU Supervision},
author={Ming, Qi and Miao, Lingjuan and Ma, Zhe and Zhao, Lin and Zhou, Zhiqiang and Huang, Xuhui and Chen, Yuanpei and Guo, Yufei},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={5136--5145},
year={2023}
}
Feel free to contact me if you have any questions.