Home

Awesome

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised Learning for Program Repair (ICML 2021).

@InProceedings{yasunaga2021break,
  author =  {Michihiro Yasunaga and Percy Liang},
  title =   {Break-It-Fix-It: Unsupervised Learning for Program Repair},
  year =    {2021},  
  booktitle = {International Conference on Machine Learning (ICML)},  
}

Problem: Repair Task

<p align="center"> <img src="figs/task.png" width="600" title="Problem: Repair Task" alt=""> </p>

Our approach: BIFI

<p align="center"> <img src="figs/bifi.png" width="500" title="Overview of BIFI training algorithm" alt=""> </p>

0. Dependencies

Run the following commands to create a conda environment (assuming CUDA10.1):

conda create -n BIFI python=3.7.7
conda activate BIFI
pip install tqdm
pip install torch==1.4.0 torchvision==0.5.0
cd utils/fairseq
pip install -e .
pip install numpy==1.20.1 editdistance

Alternatively, you can use the Dockerfile in the docker folder of this repo to set up the environment.

1. Download Data

Download all the data from here (data.zip) and unzip it (note: 67GB when compressed, 400GB when decompressed). This includes the GitHub-Python dataset, and all the processed training data and trained models associated with BIFI. If you only want the original GitHub-Python dataset, you can download it from here (data_minimal.zip; 1GB). After unzipping the data.zip, the resulting file structure will look like:

.
├── README.md
└── data/
    ├── orig_bad_code/       (GitHub-Python dataset's bad code)
    ├── orig_good_code/      (GitHub-Python dataset's good code)
    └── round0/
        ├── data_paired      (paired data used to train fixer in round0)
        └── model-fixer      (fixer trained in round0)
    ├── round1-BIFI-part1/
        ├── data_paired      (paired data used to train breaker in BIFI round1)
        └── model-breaker    (breaker trained in BIFI round1)
    ├── round1-BIFI-part2/
        ├── data_paired      (paired data used to train fixer in BIFI round1)
        └── model-fixer      (fixer trained in BIFI round1)
    ├── ...

About the GitHub-Python dataset

We collected 3 million Python3 snippets from GitHub. Using the critic (Python AST parser), the code snippets are split into a set of bad code (with AST parse errors) and a set of good code (with no errors). The set of bad code is located at data/orig_bad_code/orig.bad.json and good code at data/orig_good_code/orig.good.json. Each entry of orig.bad.json or orig.good.json is a dictionary consisting of

The bad code snippets in orig.bad.json are split into 5 chunks (orig.0.bad to orig.4.bad in data/orig_bad_code/), where 3,4 is heldout as the test set and 0,1,2 is made available for BIFI training. This splitting was done by scripts/split_orig_bad_and_good.py

2. Training and Evaluation

First, train the initial fixer by running commands in src/run-round0.py one by one. We then consider three training algorithms on top of it: BIFI (our proposed method), FixerOnly (BIFI without breaker), and BackTranslation (BT; our baseline). For each algorithm,

Below is an illustration for the case of BIFI.

run-round0.sh

export PYTHONPATH=.

#Train initial fixer on synthetic paired data
python src/c001__train_fixer.py --round_name round0 --gpu_id 0 --max_epoch 2

#Run the trained fixer on the bad code (chunk 0-4) and check the outputs by critic
python src/c003__run_fixer.py   --round_name round0 --gpu_ids '0,1,2,3,4'

#Evaluate the fixer outputs on the test set (chunk 3,4)
python src/c005__eval_fixer.py  --round_name round0

run-BIFI.sh (round 1)

#Use the fixer outputs on the bad code (chunk 0,1,2) to get new paired data (Equation 6 in the paper)
python src/c006__generate_paired_data_from_fixer.py --round_name round0 --out_round_name round1-BIFI-part1

#Train breaker on the new paired data (Equation 7 in the paper)
python src/c002__train_breaker.py --round_name round1-BIFI-part1 --gpu_id 0 --max_epoch 3

#Run the trained breaker on the good code and get new paired data (Equation 8 in the paper)
python src/c004__run_breaker.py   --round_name round1-BIFI-part1 --gpu_ids '0,1,2,3,4'
python src/c007__generate_paired_data_from_breaker.py --round_name round1-BIFI-part1 --out_round_name round1-BIFI-part2

#Train fixer on the new paired data (Equation 9 in the paper)
python src/c001__train_fixer.py --round_name round1-BIFI-part2 --gpu_id 0 --max_epoch 2 --continue_from 'data/round0/model-fixer/checkpoint.pt'

#Run the trained fixer on the bad code (chunk 0-4) and check the outputs by critic
python src/c003__run_fixer.py   --round_name round1-BIFI-part2 --gpu_ids '0,1,2,3,4'

#Evaluate the fixer outputs on the test set (chunk 3,4)
python src/c005__eval_fixer.py  --round_name round1-BIFI-part2

This is repeated similarly for round 2.