Home

Awesome

Superpixel-enhanced Deep Neural Forest for Remote Sensing Image Semantic Segmentation

NOTE: The CODE is UNDER maintenance since 13 Oct 2020. Codes and modifications will continue to be updated.

Results for Paper: Superpixel-enhanced Deep Neural Forest for Remote Sensing Image Semantic Segmentation
Framework

Environments

Data

IndexRGB
Imp0255255255
Build100255
Low20255255
Tree302550
Car42552550
Cluster525500
Un6000

Pre-trained Model

Evaluation

import predict_potsdam
predict_potsdam.process()

import predict_vaihingen
predict_vaihingen.process()

Results

Imp.S.Imp.S.Build.Build.Low.V.Low.V.TreeTreeCarCarMeanMeanOA
F1IoUF1IoUF1IoUF1IoUF1IoUF1IoU
Potsdam93.587.796.393.089.881.592.786.496.793.693.888.492.1
Vaihingen93.687.996.292.688.078.692.686.385.374.491.183.992.6

Acknowledgements

Our code is developed based on:

ssn_superpixels
pytorch_ssn
fully-differentiable-deep-ndf-tf
Neural-Decision-Forests
tensorflow-deeplab-v3
deeplabv3-Tensorflow

Cite

@article{Li2020Superpixel,
title={Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation},
author={Li Mi and Zhenzhong Chen},
journal={ISPRS Journal of Photogrammetry and Remote Sensing},
volume={159},
pages={140-152},
year={2020},
}