Awesome
MoESR: Blind Super-Resolution using Kernel-Aware Mixture of Experts
This repository is the official implementation of "MoESR: Blind Super-Resolution using Kernel-Aware Mixture of Experts".
Requirements
To install requirements:
conda env create -f environment.yml
conda activate MoESR_env
Datasets and pretrained models
You can download all datasets (DIV2KRK, Flickr2KRK and Urban100RK) and pretrained models from the following link: https://drive.google.com/drive/folders/1v7Lthkp-nLwdXGGkqolBgl5H88oNDH6l?usp=sharing
Test on synthetic datasets
For example to evaluate on DIV2KRK dataset:
cd codes
python main.py --in_dir ../datasets/DIV2KRK/lr_x2 --out_dir ../results/DIV2KRK/x2 --gt_dir ../datasets/DIV2KRK/gt --scale 2
python main.py --in_dir ../datasets/DIV2KRK/lr_x4 --out_dir ../results/DIV2KRK/x4 --gt_dir ../datasets/DIV2KRK/gt --scale 4
Test on real images
To evaluate on real-world images:
cd codes
python main.py --in_dir 'path to the LR input images' --out_dir 'path to save results' --scale 2 --real
python main.py --in_dir 'path to the LR input images' --out_dir 'path to save results' --scale 4 --real
Results
Our model achieves the following performance values (PSNR / SSIM) on DIV2KRK, Flickr2KRK and Urban100RK datasets:
Model name | Scale | DIV2KRK | Flickr2KRK | Urban100RK |
---|---|---|---|---|
MoESR | x2 | 32.69 / 0.9054 | 32.95 / 0.9056 | 27.29 / 0.8448 |
MoESR | x4 | 28.48 / 0.7805 | 28.57 / 0.7795 | 23.62 / 0.6766 |
Acknowledgement
The code is built on DualSR and KernelGAN. We thank the authors for sharing the codes.