Home

Awesome

<p align="center"><img width="40%" src="./imgs/pytorch.png"></p>

Best CIFAR-10, CIFAR-100 results with wide-residual networks using PyTorch

Pytorch Implementation of Sergey Zagoruyko's Wide Residual Networks

For Torch implementations, see here.

Requirements

See the installation instruction for a step-by-step installation guide. See the server instruction for server settup.

pip install http://download.pytorch.org/whl/cu80/torch-0.1.12.post2-cp27-none-linux_x86_64.whl
pip install torchvision
git clone https://github.com/meliketoy/wide-resnet.pytorch

How to run

After you have cloned the repository, you can train each dataset of either cifar10, cifar100 by running the script below.

python main --lr 0.1 resume false --net_type [lenet/vggnet/resnet/wide-resnet] --depth 28 --widen_factor 10 --dropout_rate 0.3 --dataset [cifar10/cifar100] 

Implementation Details

epochlearning rateweight decayOptimizerMomentumNesterov
0 ~ 600.10.0005Momentum0.9true
61 ~ 1200.020.0005Momentum0.9true
121 ~ 1600.0040.0005Momentum0.9true
161 ~ 2000.00080.0005Momentum0.9true

CIFAR-10 Results

alt tag

Below is the result of the test set accuracy for CIFAR-10 dataset training.

Accuracy is the average of 5 runs

networkdropoutpreprocessGPU:0GPU:1per epochaccuracy(%)
wide-resnet 28x100ZCA5.90G-2 min 03 sec95.83
wide-resnet 28x100meanstd5.90G-2 min 03 sec96.21
wide-resnet 28x100.3meanstd5.90G-2 min 03 sec96.27
wide-resnet 28x200.3meanstd8.13G6.93G4 min 10 sec96.55
wide-resnet 40x100.3meanstd8.08G-3 min 13 sec96.31
wide-resnet 40x140.3meanstd7.37G6.46G3 min 23 sec96.34

CIFAR-100 Results

alt tag

Below is the result of the test set accuracy for CIFAR-100 dataset training.

Accuracy is the average of 5 runs

networkdropoutpreprocessGPU:0GPU:1per epochTop1 acc(%)Top5 acc(%)
wide-resnet 28x100ZCA5.90G-2 min 03 sec80.0795.02
wide-resnet 28x100meanstd5.90G-2 min 03 sec81.0295.41
wide-resnet 28x100.3meanstd5.90G-2 min 03 sec81.4995.62
wide-resnet 28x200.3meanstd8.13G6.93G4 min 05 sec82.4596.11
wide-resnet 40x100.3meanstd8.93G-3 min 06 sec81.4295.63
wide-resnet 40x140.3meanstd7.39G6.46G3 min 23 sec81.8795.51