Awesome
This repo is the official implementation of the ECCV2022 paper: Efficient One Pass Self-distillation with Zipf's Label Smoothing.
Zipf's LS: Efficient One Pass Self-distillation with Zipf's Label Smoothing
Framework & Comparison
<div style="text-align:center"><img src="megengine_zipfls/pics/framework.png" width="100%" ></div> <div style="text-align:center"><img src="megengine_zipfls/pics/comparison.png" width="100%" ></div>[2022.9] Pytorch Zipf's label smoothing is uploaded! CIFAR, TinyImageNet, ImageNet, INAT-21 are now supported by our training codes.
[2022.7] MegEngine Zipf's label smoothing is uploaded!
Main Results
Method | DenseNet121 | DenseNet121 | ResNet18 | ResNet18 |
---|---|---|---|---|
Arch | CIFAR100 | TinyImageNet | CIFAR100 | TinyImageNet |
Pytorch Baseline | 77.86±0.26 | 60.31±0.36 | 75.51±0.28 | 56.41±0.20 |
Pytorch Zipf's LS | 79.03±0.32 | 62.64±0.30 | 77.38±0.32 | 59.25±0.20 |
Megengine Baseline | 77.97±0.18 | 60.78±0.31 | 75.29±0.29 | 56.03±0.34 |
Megengine Zipf's LS | 79.85±0.27 | 62.35±0.32 | 77.08±0.28 | 59.01±0.23 |
Training
train_baseline_cifar100_resnet18:
python3 train.py --ngpus 1 --dataset CIFAR100 --data_dir cifar100_data --arch CIFAR_ResNet18 --loss_lambda 0.0 --alpha 0.0 --dense
train_ZipfsLS_cifar100_resnet18:
python3 train.py --ngpus 1 --dataset CIFAR100 --data_dir cifar100_data --arch CIFAR_ResNet18 --loss_lambda 0.1 --alpha 0.1 --dense
See more examples in Makefile.
Liscense
Zipf's LS is released under the Apache 2.0 license. See LICENSE for details.