Awesome
Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br><sub>Official PyTorch Implementation</sub>
Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br> Xin Ma, Yaohui Wang*†, Gengyun Jia, Xinyuan Chen, Yuan-Fang Li, Cunjian Chen*, Yu Qiao <br> (*Corresponding authors, †Project Lead)
This repo contains pre-trained weights, and sampling code of Cinemo. Please visit our project page for more results.
<!-- In this project, we propose a novel method called Cinemo, which can perform motion-controllable image animation with strong consistency and smoothness. To improve motion smoothness, Cinemo learns the distribution of motion residuals, rather than directly generating subsequent frames. Additionally, a structural similarity index-based method is proposed to control the motion intensity. Furthermore, we propose a noise refinement technique based on discrete cosine transformation to ensure temporal consistency. These three methods help Cinemo generate highly consistent, smooth, and motion-controlled image animation results. Compared to previous methods, Cinemo offers simpler and more precise user control and better generative performance. --> <div align="center"> <img src="visuals/pipeline.svg"> </div>News
-
(🔥 New) Jul. 29, 2024. 💥 HuggingFace space is added, you can also launch gradio interface locally.
-
(🔥 New) Jul. 23, 2024. 💥 Our paper is released on arxiv.
-
(🔥 New) Jun. 2, 2024. 💥 The inference code is released. The checkpoint can be found here.
Setup
Download and set up the repo:
git clone https://github.com/maxin-cn/Cinemo
cd Cinemo
conda env create -f environment.yml
conda activate cinemo
<!--
We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment. If you only want
to run pre-trained models locally on CPU, you can remove the `cudatoolkit` and `pytorch-cuda` requirements from the file.
```bash
conda env create -f environment.yml
conda activate cinemo
```
-->
Animation
You can sample from our pre-trained Cinemo models with animation.py
. Weights for our pre-trained Cinemo model can be found here. The script has various arguments for adjusting sampling steps, changing the classifier-free guidance scale, etc:
bash pipelines/animation.sh
Related model weights will be downloaded automatically and following results can be obtained,
<table style="width:100%; text-align:center;"> <tr> <td align="center">Input image</td> <td align="center">Output video</td> <td align="center">Input image</td> <td align="center">Output video</td> </tr> <tr> <td align="center"><img src="visuals/animations/people_walking/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/people_walking/people_walking.gif" width="100%"></td> <td align="center"><img src="visuals/animations/sea_swell/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/sea_swell/sea_swell.gif" width="100%"></td> </tr> <tr> <td align="center" colspan="2">"People Walking"</td> <td align="center" colspan="2">"Sea Swell"</td> </tr> <tr> <td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/girl_dancing_under_the_stars.gif" width="100%"></td> <td align="center"><img src="visuals/animations/dragon_glowing_eyes/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/dragon_glowing_eyes/dragon_glowing_eyes.gif" width="100%"></td> </tr> <tr> <td align="center" colspan="2">"Girl Dancing under the Stars"</td> <td align="center" colspan="2">"Dragon Glowing Eyes"</td> </tr> <tr> <td align="center"><img src="visuals/animations/bubbles__floating_upwards/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/bubbles__floating_upwards/bubbles__floating_upwards.gif" width="100%"></td> <td align="center"><img src="visuals/animations/snowman_waving_his_hand/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/snowman_waving_his_hand/snowman_waving_his_hand.gif" width="100%"></td> </tr> <tr> <td align="center" colspan="2">"Bubbles Floating upwards"</td> <td align="center" colspan="2">"Snowman Waving his Hand"</td> </tr> </table>Gradio interface
We also provide a local gradio interface, just run:
python app.py
You can specify the --share
and --server_name
arguments to meet your requirement!
Other Applications
You can also utilize Cinemo for other applications, such as motion transfer and video editing:
bash pipelines/video_editing.sh
Related checkpoints will be downloaded automatically and following results will be obtained,
<table style="width:100%; text-align:center;"> <tr> <td align="center">Input video</td> <td align="center">First frame</td> <td align="center">Edited first frame</td> <td align="center">Output video</td> </tr> <tr> <td align="center"><img src="visuals/video_editing/origin/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td> <td align="center"><img src="visuals/video_editing/origin/0.jpg" width="100%"></td> <td align="center"><img src="visuals/video_editing/edit/0.jpg" width="100%"></td> <td align="center"><img src="visuals/video_editing/edit/editing_a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td> </tr> </table>or motion transfer,
<table style="width:100%; text-align:center;"> <tr> <td align="center">Input video</td> <td align="center">First frame</td> <td align="center">Edited first frame</td> <td align="center">Output video</td> </tr> <tr> <td align="center"><img src="visuals/motion_transfer/origin/a_man_walking_on_the_beach.gif" width="100%"></td> <td align="center"><img src="visuals/motion_transfer/origin/0.jpg" width="100%"></td> <td align="center"><img src="visuals/motion_transfer/edit/0.jpg" width="100%"></td> <td align="center"><img src="visuals/motion_transfer/edit/a_man_walking_in_the_park.gif" width="100%"></td> </tr> </table>Contact Us
Xin Ma: xin.ma1@monash.edu, Yaohui Wang: wangyaohui@pjlab.org.cn
Citation
If you find this work useful for your research, please consider citing it.
@article{ma2024cinemo,
title={Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models},
author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu},
journal={arXiv preprint arXiv:2407.15642},
year={2024}
}
Acknowledgments
Cinemo has been greatly inspired by the following amazing works and teams: LaVie and SEINE, we thank all the contributors for open-sourcing.
License
The code and model weights are licensed under LICENSE.