Home

Awesome

Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br><sub>Official PyTorch Implementation</sub>

Arxiv Project Page Hugging Face Spaces

Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br> Xin Ma, Yaohui Wang*†, Gengyun Jia, Xinyuan Chen, Yuan-Fang Li, Cunjian Chen*, Yu Qiao <br> (*Corresponding authors, †Project Lead)

This repo contains pre-trained weights, and sampling code of Cinemo. Please visit our project page for more results.

<!-- In this project, we propose a novel method called Cinemo, which can perform motion-controllable image animation with strong consistency and smoothness. To improve motion smoothness, Cinemo learns the distribution of motion residuals, rather than directly generating subsequent frames. Additionally, a structural similarity index-based method is proposed to control the motion intensity. Furthermore, we propose a noise refinement technique based on discrete cosine transformation to ensure temporal consistency. These three methods help Cinemo generate highly consistent, smooth, and motion-controlled image animation results. Compared to previous methods, Cinemo offers simpler and more precise user control and better generative performance. --> <div align="center"> <img src="visuals/pipeline.svg"> </div>

News

Setup

Download and set up the repo:

git clone https://github.com/maxin-cn/Cinemo
cd Cinemo
conda env create -f environment.yml
conda activate cinemo
<!-- We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment. If you only want to run pre-trained models locally on CPU, you can remove the `cudatoolkit` and `pytorch-cuda` requirements from the file. ```bash conda env create -f environment.yml conda activate cinemo ``` -->

Animation

You can sample from our pre-trained Cinemo models with animation.py. Weights for our pre-trained Cinemo model can be found here. The script has various arguments for adjusting sampling steps, changing the classifier-free guidance scale, etc:

bash pipelines/animation.sh

Related model weights will be downloaded automatically and following results can be obtained,

<table style="width:100%; text-align:center;"> <tr> <td align="center">Input image</td> <td align="center">Output video</td> <td align="center">Input image</td> <td align="center">Output video</td> </tr> <tr> <td align="center"><img src="visuals/animations/people_walking/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/people_walking/people_walking.gif" width="100%"></td> <td align="center"><img src="visuals/animations/sea_swell/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/sea_swell/sea_swell.gif" width="100%"></td> </tr> <tr> <td align="center" colspan="2">"People Walking"</td> <td align="center" colspan="2">"Sea Swell"</td> </tr> <tr> <td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/girl_dancing_under_the_stars.gif" width="100%"></td> <td align="center"><img src="visuals/animations/dragon_glowing_eyes/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/dragon_glowing_eyes/dragon_glowing_eyes.gif" width="100%"></td> </tr> <tr> <td align="center" colspan="2">"Girl Dancing under the Stars"</td> <td align="center" colspan="2">"Dragon Glowing Eyes"</td> </tr> <tr> <td align="center"><img src="visuals/animations/bubbles__floating_upwards/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/bubbles__floating_upwards/bubbles__floating_upwards.gif" width="100%"></td> <td align="center"><img src="visuals/animations/snowman_waving_his_hand/0.jpg" width="100%"></td> <td align="center"><img src="visuals/animations/snowman_waving_his_hand/snowman_waving_his_hand.gif" width="100%"></td> </tr> <tr> <td align="center" colspan="2">"Bubbles Floating upwards"</td> <td align="center" colspan="2">"Snowman Waving his Hand"</td> </tr> </table>

Gradio interface

We also provide a local gradio interface, just run:

python app.py

You can specify the --share and --server_name arguments to meet your requirement!

Other Applications

You can also utilize Cinemo for other applications, such as motion transfer and video editing:

bash pipelines/video_editing.sh

Related checkpoints will be downloaded automatically and following results will be obtained,

<table style="width:100%; text-align:center;"> <tr> <td align="center">Input video</td> <td align="center">First frame</td> <td align="center">Edited first frame</td> <td align="center">Output video</td> </tr> <tr> <td align="center"><img src="visuals/video_editing/origin/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td> <td align="center"><img src="visuals/video_editing/origin/0.jpg" width="100%"></td> <td align="center"><img src="visuals/video_editing/edit/0.jpg" width="100%"></td> <td align="center"><img src="visuals/video_editing/edit/editing_a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td> </tr> </table>

or motion transfer,

<table style="width:100%; text-align:center;"> <tr> <td align="center">Input video</td> <td align="center">First frame</td> <td align="center">Edited first frame</td> <td align="center">Output video</td> </tr> <tr> <td align="center"><img src="visuals/motion_transfer/origin/a_man_walking_on_the_beach.gif" width="100%"></td> <td align="center"><img src="visuals/motion_transfer/origin/0.jpg" width="100%"></td> <td align="center"><img src="visuals/motion_transfer/edit/0.jpg" width="100%"></td> <td align="center"><img src="visuals/motion_transfer/edit/a_man_walking_in_the_park.gif" width="100%"></td> </tr> </table>

Contact Us

Xin Ma: xin.ma1@monash.edu, Yaohui Wang: wangyaohui@pjlab.org.cn

Citation

If you find this work useful for your research, please consider citing it.

@article{ma2024cinemo,
  title={Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models},
  author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu},
  journal={arXiv preprint arXiv:2407.15642},
  year={2024}
}

Acknowledgments

Cinemo has been greatly inspired by the following amazing works and teams: LaVie and SEINE, we thank all the contributors for open-sourcing.

License

The code and model weights are licensed under LICENSE.