Home

Awesome

Test-Time Generative Augmentation (TTGA)

This is the official repository for "Test-Time Generative Augmentation for Medical Image Segmentation"

Introduction

Test-Time Generative Augmentation (TTGA) is a novel approach to enhance medical image segmentation during test time. Instead of employing handcrafted transforms or functions on the input test image to create multiple views for test-time augmentation, this approach advocate for the utilization of an advanced domain-fine-tuned generative model, e.g., diffusion models, for test-time augmentation. Hence, by integrating the generative model into test-time augmentation, we can effectively generate multiple views of a given test sample, aligning with the content and appearance characteristics of the sample and the related local data distribution.

<img src="figs/fig-1.png">

Augmentation

:sparkles: Optic Disc and Cup Segmentation

<p float="left"> <img src=figs/fundus_org.png height=150 /> <img src=figs/fundus_aug.gif height=150 /> </p>

:sparkles: Polyp Segmentation

<p float="left"> <img src=figs/polyp_org.png height=150 /> <img src=figs/polyp_aug.gif height=150 /> </p>

:sparkles: Skin Lesion Segmentation

<p float="left"> <img src=figs/skin_org.png height=150 /> <img src=figs/skin_aug.gif height=150 /> </p>

Materials

:two_hearts: SOTA segmentation models with codes, datasets and open-source parameters. (Thanks!)

IndexPhysiologyDatasetPaperCode
1Optic Disc and CupREFUGE20Segtraincode
2PolypKvasir<br>CVC-ClinicDB<br>CVC-ColonDB<br>CVC-300<br>ETIS-LaribPolypDBHSNetcode
3Skin LesionISIC 2017<br>ISIC 2018TMUnetcode

Citing

TO-DO.