Home

Awesome

math-codegen

NPM codecov

js-standard-style

Generates JavaScript code from mathematical expressions

<!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->

Table of Contents * generated with DocToc *

<!-- END doctoc generated TOC please keep comment here to allow auto update -->

Description

An interpreter for mathematical expressions which allows the programmer to change the usual semantic of an operator bringing the operator overloading polymorphism to JavaScript (emulated with function calls), in addition an expression can be evaluated under any adapted namespace providing expression portability between numeric libraries

Lifecycle

Parse

For example let's consider the following expression with the variable x which is defined by the user:

'1 + 2 * x'

the expression can be emulated with function calls instead of operators, math-codegen will map many mathematical operators to callable methods

'add(1, mul(2, x))'

now we can introduce the namespace ns where add and multiply come from

'ns.add(1, ns.mul(2, x))'

the variables (which for the parser are symbols come from a context called scope but they might also be constant values defined in the namespace:

'ns.add(1, ns.mul(2, (scope["x"] || ns["x"]) ))'

the constant values might have different meanings for different namespaces therefore a factory is needed on the namespace to transform these values into values the namespace can operate with

'ns.add(ns.factory(1), ns.mul(ns.factory(2), (scope["x"] || ns["x"]) ))'

Compile

Now that we have a parsed expression we have to compile it against a namespace to produce executable JavaScript code

parse('1 + 2 * x').compile(namespace)

// returns something like this
(function (definitions) {
  var ns = definitions.namespace
  return {
    eval: function (scope) {
      // scope processing
      // ...
      // the string parsed above goes here
      return ns.add(ns.factory(1), ns.mul(ns.factory(2), (scope["x"] || ns["x"]) ))
    }
  }
})(definitions)   // definitions created by math-codegen

Eval

The object returned above can be evaluated within a context

parse('1 + 2 * x').compile(namespace).eval(scope)

Differences with math.js expression parser

Math.js expression parser API is quite similar having the same lifecycle however there are some important facts I've found:

Operators

The following operators recognized by mr-parser are named as follows when compiled

'+': 'add'
'-': 'sub'
'*': 'mul'
'/': 'div'
'^': 'pow'
'%': 'mod'
'!': 'factorial'

// misc operators
'|': 'bitwiseOR'
'^|': 'bitwiseXOR'
'&': 'bitwiseAND'

'||': 'logicalOR'
'xor': 'logicalXOR'
'&&': 'logicalAND'

// comparison
'<': 'lessThan'
'>': 'greaterThan'
'<=': 'lessEqualThan'
'>=': 'greaterEqualThan'
'===': 'strictlyEqual'
'==': 'equal'
'!==': 'strictlyNotEqual'
'!=': 'notEqual'

// shift
'>>': 'shiftRight'
'<<': 'shiftLeft'
'>>>': 'unsignedRightShift'

// unary
'+': 'positive'
'-': 'negative'
'~': 'oneComplement'

Install

$ npm install --save math-codegen

Usage

var CodeGenerator = require('math-codegen');
new CodeGenerator([options]).parse(code).compile(namespace).eval(scope)

API

var instance = new CodeGenerator([options])

properties

params

instance.parse(code)

chainable params

Parses a program using mr-parse, each Expression Statement is saved in instance.statements

The documentation for the available nodes is described in mr-parse

instance.compile(namespace)

chainable params

Compiles the code making namespace's properties available during evaluation, it's required to have the factory property defined

returns {Object}

instance.setDefs(defs)

params

An object whose properties will be available during evaluation, properties can be accessed by the property name in the program

Examples

built-in math

'use strict'
var CodeGenerator = require('math-codegen')

var numeric = {
  factory: function (a) { return a },
  add: function (a, b) { return a + b },
  mul: function (a, b) { return a * b }
}

// 1 + 2 * 3 = 7
new CodeGenerator()
  .parse('1 + 2 * x')
  .compile(numeric)
  .eval({x: 3})
)

imaginary

'use strict'
var CodeGenerator = require('math-codegen')

var imaginary = {
  factory: function (a) {
    // a = [re, im]
    if (typeof a === 'number') {
      return [a, 0]
    }
    return [a[0] || 0, a[1] || 0]
  },
  add: function (a, b) {
    var re = a[0] + b[0]
    var im = a[1] + b[1]
    return [re, im]
  },
  mul: function (a, b) {
    var re = a[0] * b[0] - a[1] * b[1]
    var im = a[0] * b[1] + a[1] * b[0]
    return [re, im]
  }
}

var instance = new CodeGenerator()

// [1, 0] + [2, 0] * [1, 1]
// [1, 0] + [2, 2]
// [3, 2]
instance
  .parse('1 + 2 * x')
  .compile(imaginary)
  .eval({x : [1, 1]})

// because of the way the factory works it can also receive an array as a parameter
// [1, 0] + [2, 0] * [1, 1]
// [1, 0] + [2, 2]
// [3, 2]
instance
  .parse('[1, 0] + [2, 0] * x')
  .compile(imaginary)
  .eval({x : [1, 1]});

interval arithmetic

'use strict'
var CodeGenerator = require('math-codegen')

var interval = {
  factory: function (a) {
    // a = [lo, hi]
    if (typeof a === 'number') {
      return [a, a]
    }
    return [a[0], a[1]]
  },
  add: function (x, y) {
    return [x[0] + y[0], x[1] + y[1]]
  },
  mul: function (x, y) {
    var ac = x[0] * y[0]
    var ad = x[0] * y[1]
    var bc = x[1] * y[0]
    var bd = x[1] * y[1]
    return [Math.min(ac, ad, bc, bd), Math.max(ac, ad, bc, bd)]
  }
}

var instance = new CodeGenerator()

// [1, 1] + [2, 2] * [-1, 2]
// [1, 1] + [-2, 4]
// [-1, 5]
instance
  .parse('1 + 2 * x')
  .compile(interval)
  .eval({x: [-1, 2]})

Inspiration projects

License

MIT