Home

Awesome

layerdivider

A tool to divide a single illustration into a layered structure. スクリーンショット 2023-03-07 034638

スクリーンショット_20230307_035053

https://user-images.githubusercontent.com/48423148/223344286-bf2dff31-3fc5-4970-8d68-86274f1f36eb.mp4

Install

use Google Golab

Open In Colab

  1. Click colab button.
  2. Run all cells.
  3. Click output addres(Running on public URL: https: //xxxxxxx.gradio.live).

Local Install

Windows Installation

Required Dependencies

Python 3.10.8 and Git

install Step

git clone https://github.com/mattyamonaca/layerdivider
  1. run install.ps1 first time use, waiting for installation to complete.
  2. run run_gui.ps1 to open local gui.
  3. open website localhost:port to use(The default is localhost:7860).

Optional: For Python Launcher Users

If you use Python launcher (py command) for executing Python, you should use install_with_launcher.ps1 instead of install.ps1. The reason is install_with_launcher.ps1 uses py command for executing venv module, while install.ps1 uses python command.

処理内容

  1. 入力された画像をピクセル単位でRGB情報に従いクラスタリング
  2. 色の類似度(CIEDE2000基準)が近いクラスタを統合
  3. 入力された画像をブラー処理で平滑化
  4. クラスタごとにブラー処理後の色の平均値を出し、算出した平均値ですべてのピクセルを塗りなおし
  5. 2-4を指定された回数繰り返し実行
  6. 最終的なクラスタリング結果に基づき、ベースとなるレイヤーを作成
  7. ベースレイヤーの各色を、入力された画像のクラスタ毎の平均色で塗りなおし
  8. ベースレイヤーとオリジナルの色差に基づいて効果レイヤーを算出

Processing content

  1. Cluster the input image based on RGB information at the pixel level.
  2. Merge clusters with similar color similarity (based on CIEDE2000 criteria).
  3. Smooth the input image using a blur process.
  4. For each cluster, calculate the average color value after blurring and repaint all pixels with this calculated value.
  5. Repeat steps 2-4 for a specified number of times.
  6. Create a base layer based on the final clustering result.
  7. Repaint each color in the base layer with the average color of each cluster in the input image.
  8. Calculate an effect layer based on differences between the base layer and original colors.

パラメータ説明

Parameter Description