Home

Awesome

COMA: efficient structure-constrained molecular generation using COnstractive and MArgin losses

<img src="figs/overview_of_COMA.png" alt="thumbnail" width="600px" />

This repository is for COMA, a structure-constrained molecular generative model.

For a given source molecule, COMA generates a novel molecule with more improved chemical properties by making a small modification on the source structure.

To achieve property improvement and high structural similarity simultaneously, COMA exploits reinforcement learning and metric learning.

For more detail, please refer to J. Choi, S. Seo, and S. Park. COMA: efficient structure-constrained molecular generation using contractive and margin losses. J Cheminform 15, 8 (2023). https://doi.org/10.1186/s13321-023-00679-y


SYSTEM REQUIERMENTS:


Installation:

git clone https://github.com/mathcom/COMA.git
cd COMA
conda env create -f environment.yml
conda env create -f environment_legacy.yml

Data:

cd data
tar -xzvf drd2.tar.gz
tar -xzvf qed.tar.gz
tar -xzvf logp04.tar.gz
tar -xzvf logp06.tar.gz
cd ..

Scripts:

conda activate coma
jupyter notebook

~ run tutorial ~

conda deactivate

Source codes:


Contact: