Home

Awesome

Actions Status project chat

Hierarchy Builder

Hierarchy Builder (HB) provides high level commands to declare a hierarchy of algebraic structure (or interfaces if you prefer the glossary of computer science) for the Coq system.

Given a structure one can develop its theory, and that theory becomes automatically applicable to all the examples of the structure. One can also declare alternative interfaces, for convenience or backward compatibility, and provide glue code linking these interfaces to the structures part of the hierarchy.

HB commands compile down to Coq modules, sections, records, coercions, canonical structure instances and notations following the packed classes discipline which is at the core of the Mathematical Components library. All that complexity is hidden behind a few concepts and a few declarative Coq commands.

Example

From HB Require Import structures.
From Coq Require Import ssreflect ZArith.

HB.mixin Record IsAddComoid A := {
  zero : A;
  add : A -> A -> A;
  addrA : forall x y z, add x (add y z) = add (add x y) z;
  addrC : forall x y, add x y = add y x;
  add0r : forall x, add zero x = x;
}.

HB.structure Definition AddComoid := { A of IsAddComoid A }.

Notation "0" := zero.
Infix "+" := add.

Check forall (M : AddComoid.type) (x : M), x + x = 0.

This is all we need to do in order to declare the AddComoid structure and write statements in its signature.

We proceed by declaring how to obtain an Abelian group out of the additive, commutative, monoid.

HB.mixin Record IsAbelianGrp A of IsAddComoid A := {
  opp : A -> A;
  addNr : forall x, opp x + x = 0;
}.

HB.structure Definition AbelianGrp := { A of IsAbelianGrp A & IsAddComoid A }.

Notation "- x" := (opp x).

Abelian groups feature the operations and properties given by the IsAbelianGrp mixin (and its dependency IsAddComoid).

Lemma example (G : AbelianGrp.type) (x : G) : x + (- x) = - 0.
Proof. by rewrite addrC addNr -[LHS](addNr zero) addrC add0r. Qed.

We proceed by showing that Z is an example of both structures, and use the lemma just proved on a statement about Z.

HB.instance Definition Z_CoMoid :=
  IsAddComoid.Build Z 0%Z Z.add Z.add_assoc Z.add_comm Z.add_0_l.
 
HB.instance Definition Z_AbGrp :=
  IsAbelianGrp.Build Z Z.opp Z.add_opp_diag_l.

Lemma example2 (x : Z) : x + (- x) = - 0.
Proof. by rewrite example. Qed.

Documentation

This paper describes the language in details, and the corresponding talk is available on youtube. The wiki gathers some tricks and FAQs. If you want to work on the implementation of HB, this recorded hacking session may be relevant to you.

Installation & availability

<details><summary>(click to expand)</summary><p>
opam repo add coq-released https://coq.inria.fr/opam/released
opam install coq-hierarchy-builder
</p></details>

Key concepts

<details><summary>(click to expand)</summary><p> </p></details>

The commands of HB

<details><summary>(click to expand)</summary><p>

The documentation of all commands can be found in the comments of structures.v, search for Elpi Command and you will find them. All commands can be prefixed with the attribute #[verbose] to get an idea of what they are doing.

For debugging and teaching purposes, passing the attributes #[log] or #[log(raw)] to a HB command prints Coq commands which are almost equivalent to its effect. Hence, copy-pasting the displayed commands into your source file is not expected to work, and we strongly recommend against it.

</p></details>

Demos

<details><summary>(click to expand)</summary><p> </p></details>