Awesome
Extending CLIP for Category-to-Image Retrieval in E-commerce
This repository contains the code used for the experiments in "Extending CLIP for Category-to-image Retrieval in E-commerce" published at ECIR 2022.
<div align="center"> </div>License
The contents of this repository are licensed under the MIT license. If you modify its contents in any way, please link back to this repository.
Reproducing Experiments
First off, install the dependencies:
pip install -r requirements.txt
Download the data
Download the CLIP_data.zip
from this repository.
After unzipping CLIP_data.zip
put the resulting data
folder in the root:
data/
datasets/
results/
Evaluate the model
sh jobs/evaluation/evaluate_cub.job
sh jobs/evaluation/evaluate_abo.job
sh jobs/evaluation/evaluate_fashion200k.job
sh jobs/evaluation/evaluate_mscoco.job
sh jobs/evaluation/evaluate_flickr30k.job
# printing the results for CLIP in one file
sh jobs/postprocessing/results_printer.job
Citing and Authors
If you find this repository helpful, feel free to cite our paper "Extending CLIP for Category-to-image Retrieval in E-commerce":
@inproceedings{hendriksen-2022-extending-clip,
author = {Hendriksen, Mariya and Bleeker, Maurits and Vakulenko, Svitlana and van Noord, Nanne and Kuiper, Ernst and de Rijke, Maarten},
booktitle = {ECIR 2022: 44th European Conference on Information Retrieval},
month = {April},
publisher = {Springer},
title = {Extending CLIP for Category-to-image Retrieval in E-commerce},
year = {2022}}