Awesome
DGECN
This repo provides the PyTorch implementation of the work:
Tuo Cao, Fei Luo, Yanping Fu, Wenxiao Zhang, Shengjie Zheng, Chunxia Xiao. DGECN: A Depth-Guided Edge Convolutional Network for End-to-End 6D Pose Estimation. In CVPR 2022. Project page
Please note that this repo only contains test code without KFA and DRN, and test with RANSAC/PnP. But we also provide our DG-PnP, we may provide the full code in Huawei Ascend after the conference.
Overview
<p align="center"> <img src='pic/overview.png' width='800'> <p>Requirements
- Ubuntu 16.04/18.04, CUDA 10.1/10.2, python >= 3.6, PyTorch >= 1.6, torchvision
- Generate your test file list as ycb-video-testlist.txt
Datasets and Pretrained model
Download the YCB-V from here and extract to ./data.
Please also download the pretrained model from here (BaiduNetDisk, OneDrive, password: gk8y).
Evaluation on YCB-V
python test.py --use_gpu --filelist=FILELIST --out_dir=./Result --test_mode=YCB-Video --model_path=MODEL_PATH
Example:
python test.py --use_gpu --filelist=ycb-video-testlist.txt --out_dir=./Result --test_mode=YCB-Video --model_path=dgecn.pth
Visualize depth predictions
python depth_vis.py --image_path=IMAGE_PATH --model_path=MODEL_PATH --ext==FILE_EXT
Example:
python depth_vis.py --image_path=./assert/test_0.png --model_path=dgecn.pth --ext=png
This pretrained model is trained on video 0000 ~ 0010, the predictions on other videos may not good. We will release our pretrained model on all videos in the full code.
<p align="center"> <img src="assert/test_0.png" width="400"/><img src="assert/test_0_disp.jpeg" width="400"/> </p>Citation
If you find this useful in your research, please consider citing our paper.
@InProceedings{Cao_2022_CVPR,
author = {Cao, Tuo and Luo, Fei and Fu, Yanping and Zhang, Wenxiao and Zheng, Shengjie and Xiao, Chunxia},
title = {DGECN: A Depth-Guided Edge Convolutional Network for End-to-End 6D Pose Estimation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {3783-3792}
}
References
- [1] Sida Peng, Yuan Liu, Qixing Huang, Hujun Bao, and Xiaowei Zhou. PVNET: Pixel-wise voting network for 6dof pose estimation.
- [2] Yinlin Hu, Joachim Hugonot, Pascal Fua, and Mathieu Salz- mann. Segmentation-Driven 6D Object Pose Estimation..
- [3] Clément Godard, Oisin Mac Aodha, Michael Firman and Gabriel J. Brostow. Digging into Self-Supervised Monocular Depth Prediction.
- [4] Wang, Yue; Sun, Yongbin; Liu, Ziwei; Sarma, Sanjay E.; Bronstein, Michael M.; Solomon, Justin M. Dynamic Graph CNN for Learning on Point Clouds.
- [4] Gu Wang, Fabian Manhardt, Federico Tombari, and Xi- angyang Ji. GDR-net: Geometry-guided direct regression network for monocular 6d object pose estimation.