Awesome
rio-mucho
Windowed parallel processing wrapper for rasterio
Install
From pypi:
pip install rio-mucho
From github:
pip install pip install git+ssh://git@github.com/mapbox/rio-mucho.git@<branch>
Development:
git clone git@github.com:mapbox/rio-mucho.git
cd rio-mucho
pip install -e .
Usage
with riomucho.RioMucho([{inputs}], {output}, {run function},
windows={windows},
global_args={global arguments},
options={options to write}) as rios:
rios.run({processes})
Arguments
inputs
An list of file paths to open and read.
output
What file to write to.
run_function
A function to be applied to each window chunk. This should have input arguments of:
- A data input, which can be one of:
- A list of numpy arrays of shape (x,y,z), one for each file as specified in input file list
mode="simple_read" [default]
- A numpy array of shape ({n input files x n band count}, {window rows}, {window cols})
mode=array_read"
- A list of open sources for reading
mode="manual_read"
- A
rasterio
window tuple - A
rasterio
window index (ij
) - A global arguments object that you can use to pass in global arguments
This should return:
- An output array of ({depth|count}, {window rows}, {window cols}) shape, and of the correct data type for writing
def basic_run({data}, {window}, {ij}, {global args}):
## do something
return {out}
Keyword arguments
windows={windows}
A list of rasterio
(window, ij) tuples to operate on. [Default = src[0].block_windows()]
global_args={global arguments}
Since this is working in parallel, any other objects / values that you want to be accessible in the run_function
. [Default = {}]
global_args = {
'divide_value': 2
}
options={keyword args}
The options to pass to the writing output. [Default = srcs[0].meta]
Example
import riomucho, rasterio, numpy
def basic_run(data, window, ij, g_args):
## do something
out = np.array(
[d /= global_args['divide'] for d in data]
)
return out
# get windows from an input
with rasterio.open('/tmp/test_1.tif') as src:
## grabbing the windows as an example. Default behavior is identical.
windows = [[window, ij] for ij, window in src.block_windows()]
options = src.meta
# since we are only writing to 2 bands
options.update(count=2)
global_args = {
'divide': 2
}
processes = 4
# run it
with riomucho.RioMucho(['input1.tif','input2.tif'], 'output.tif', basic_run,
windows=windows,
global_args=global_args,
options=options) as rm:
rm.run(processes)
Utility functions
riomucho.utils.array_stack([array, array, array,...])
Given a list of ({depth}, {rows}, {cols}) numpy arrays, stack into a single ({list length * each image depth}, {rows}, {cols}) array. This is useful for handling variation between rgb
inputs of a single file, or separate files for each.
One RGB file
files = ['rgb.tif']
open_files = [rasterio.open(f) for f in files]
rgb =riomucho.utils.array_stack([src.read() for src in open_files])
Separate RGB files
files = ['r.tif', 'g.tif', 'b.tif']
open_files = [rasterio.open(f) for f in files]
rgb = riomucho.utils.array_stack([src.read() for src in open_files])