Home

Awesome

<div align="center">

Neural Face Identification in a 2D Wireframe Projection of a Manifold Object

<h4> <a href='https://jason-khan.github.io/' target='_blank'>Kehan Wang</a> · <a href='https://bertjiazheng.github.io/' target='_blank'>Jia Zheng</a> · <a href='https://zihan-z.github.io/' target='_blank'>Zihan Zhou</a> </h4> <h4> IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022 </h4>

arXiv Conference

<img src="assets/teaser.gif"> </div>

Requirements

conda env create --file environment.yml
conda activate faceformer

Download Dataset

We use CAD mechanical models from ABC dataset. In order to reproduce our results, we also release the dataset used in the paper here. If you would like to build the dataset by yourself, please refer to here.

Evaluation

Face Identification Model

Trained models can be downloaded here.

python main.py --config-file configs/{MODEL_NAME}.yml --test_ckpt trained_models/{MODEL_NAME}.ckpt

Face predictions will be saved to lightning_logs/version_{LATEST}/json.

3D Reconstruction

# wireframe reconstruction
python reconstruction/reconstruct_to_wireframe.py --root lightning_logs/version_{LATEST}
# surface reconstruction
python reconstruction/reconstruct_to_mesh.py --root lightning_logs/version_{LATEST}

Reconstructed wireframes (.ply) or meshes (obj) files will be saved to lightning_logs/version_{LATEST}/{ply/obj}

Train a Model from Scratch

python main.py --config_file configs/{MODEL_NAME}.yml

FAQs

Acknowledgement

The work was done during Kehan Wang's internship at Manycore Tech Inc.