Awesome
PyTorch BERT Document Classification
Implementation and pre-trained models of the paper Enriching BERT with Knowledge Graph Embedding for Document Classification (PDF). A submission to the GermEval 2019 shared task on hierarchical text classification. If you encounter any problems, feel free to contact us or submit a GitHub issue.
Content
- CLI script to run all experiments
- WikiData author embeddings (view on Tensorboard Projector)
- Data preparation
- Requirements
- Trained model weights as release files
Model architecture
Installation
Requirements:
- Python 3.6
- CUDA GPU
- Jupyter Notebook
Install dependencies:
pip install -r requirements.txt
Prepare data
GermEval data
- Download from shared-task website: here
- Run all steps in Jupyter Notebook: germeval-data.ipynb
Author Embeddings
- Download pre-trained Wikidata embedding (30GB): Facebook PyTorch-BigGraph
- Download WikiMapper index files (de+en)
python wikidata_for_authors.py run ~/datasets/wikidata/index_enwiki-20190420.db \
~/datasets/wikidata/index_dewiki-20190420.db \
~/datasets/wikidata/torchbiggraph/wikidata_translation_v1.tsv.gz \
~/notebooks/bert-text-classification/authors.pickle \
~/notebooks/bert-text-classification/author2embedding.pickle
# OPTIONAL: Projector format
python wikidata_for_authors.py convert_for_projector \
~/notebooks/bert-text-classification/author2embedding.pickle
extras/author2embedding.projector.tsv \
extras/author2embedding.projector_meta.tsv
Reproduce paper results
Download pre-trained models: GitHub releases
Available experiment settings
Detailed settings for each experiment can found in cli.py
.
task-a__bert-german_full
task-a__bert-german_manual_no-embedding
task-a__bert-german_no-manual_embedding
task-a__bert-german_text-only
task-a__author-only
task-a__bert-multilingual_text-only
task-b__bert-german_full
task-b__bert-german_manual_no-embedding
task-b__bert-german_no-manual_embedding
task-b__bert-german_text-only
task-b__author-only
task-b__bert-multilingual_text-only
Enviroment variables
TRAIN_DF_PATH
: Path to Pandas Dataframe (pickle)GPU_ID
: Run experiments on this GPU (used forCUDA_VISIBLE_DEVICES
)OUTPUT_DIR
: Directory to store experiment outputEXTRAS_DIR
: Directory where author embeddings and gender data is locatedBERT_MODELS_DIR
: Directory where pre-trained BERT models are located
Validation set
python cli.py run_on_val <name> $GPU_ID $EXTRAS_DIR $TRAIN_DF_PATH $VAL_DF_PATH $OUTPUT_DIR --epochs 5
Test set
python cli.py run_on_test <name> $GPU_ID $EXTRAS_DIR $FULL_DF_PATH $TEST_DF_PATH $OUTPUT_DIR --epochs 5
Evaluation
The scores from the result table can be reproduced with the evaluation.ipynb
notebook.
How to cite
If you are using our code, please cite our paper:
@inproceedings{Ostendorff2019,
address = {Erlangen, Germany},
author = {Ostendorff, Malte and Bourgonje, Peter and Berger, Maria and Moreno-Schneider, Julian and Rehm, Georg},
booktitle = {Proceedings of the GermEval 2019 Workshop},
title = {{Enriching BERT with Knowledge Graph Embedding for Document Classification}},
year = {2019}
}
References
- GermEval 2019 Task 1 on Codalab
- Google BERT Tensorflow
- Huggingface PyTorch Transformer
- Deepset AI - BERT-german
- Facebook PyTorch BigGraph
License
MIT