Home

Awesome

<h1 align="center"> InteractE </h1> <h4 align="center">Improving Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions</h4> <p align="center"> <a href="https://aaai.org/Conferences/AAAI-20/"><img src="http://img.shields.io/badge/AAAI-2020-4b44ce.svg"></a> <a href="https://arxiv.org/abs/1911.00219"><img src="http://img.shields.io/badge/Paper-PDF-red.svg"></a> <a href="https://shikhar-vashishth.github.io/assets/pdf/interacte_supp.pdf"><img src="http://img.shields.io/badge/Supplementary-PDF-green.svg"></a> <a href="https://github.com/malllabiisc/InteractE/blob/master/LICENSE"> <img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg"> </a> </p> <h2 align="center"> Overview of InteractE <img align="center" src="./overview.png" alt="..."> </h2>

Given entity and relation embeddings, InteractE generates multiple permutations of these embeddings and reshapes them using a "Chequered" reshaping function. Depthwise circular convolution is employed to convolve each of the reshaped permutations, which are then fed to a fully-connected layer to compute scores. Please refer to Section 6 of the paper for details.*

Dependencies

Dataset:

Training model from scratch:

Evaluating Pre-trained model:

Citation:

Please cite the following paper if you use this code in your work.

@inproceedings{interacte2020,
  title={InteractE: Improving Convolution-based Knowledge Graph Embeddings by Increasing Feature Interactions},
  author={Vashishth, Shikhar and Sanyal, Soumya and Nitin, Vikram and Agrawal, Nilesh and Talukdar, Partha},
  booktitle={Proceedings of the 34th AAAI Conference on Artificial Intelligence},
  pages={3009--3016},
  publisher={AAAI Press},
  url={https://aaai.org/ojs/index.php/AAAI/article/view/5694},
  year={2020}
}

For any clarification, comments, or suggestions please create an issue or contact Shikhar.