Awesome
HOMGNN
This is a PyTorch implementation of the paper: Higher-Order Masked Graph Neural Networks for Multi-Step Traffic Flow Prediction.
Requirements
The model is implemented using Python3 with dependencies specified in requirements.txt
Data Preparation
Traffic datasets
Download the METR-LA and PEMS-BAY dataset from Google Drive or Baidu Yun provided by Li et al. . Move them into the data folder.
# Create data directories
mkdir -p data/{METR-LA,PEMS-BAY}
# METR-LA
python generate_training_data.py --output_dir=data/METR-LA --traffic_df_filename=data/metr-la.h5
# PEMS-BAY
python generate_training_data.py --output_dir=data/PEMS-BAY --traffic_df_filename=data/pems-bay.h5
Model Training
Retrain Model on:
- METR-LA
python main.py --adj_data ./data/sensor_graph/adj_mx.pkl --data ./data/METR-LA --num_nodes 207 --order 2 --neiaccount 2
- PEMS-BAY
python main.py --adj_data ./data/sensor_graph/adj_mx_bay.pkl --data ./data/PEMS-BAY --num_nodes 325 --order 2 --neiaccount 1
Citation
@inproceedings{yuan2022higher,
title={Higher-Order Masked Graph Neural Networks for Multi-Step Traffic Flow Prediction},
author={Kaixin Yuan, Jing Liu, and Jian Lou},
booktitle={22nd IEEE International Conference on Data Mining},
year={2022}
}
Our code is based on the implementation of MTGNN .