Awesome
Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning
<details> <summary> <b>Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning</b>, CVPR 2022. <a href="https://openaccess.thecvf.com/content/CVPR2022/html/Chen_Scaling_Vision_Transformers_to_Gigapixel_Images_via_Hierarchical_Self-Supervised_Learning_CVPR_2022_paper.html" target="blank">[HTML]</a> <a href="https://arxiv.org/abs/2206.02647" target="blank">[arXiv]</a> <a href="https://www.youtube.com/watch?v=cABkB1J-GTA" target="blank">[Oral]</a> <br><em><a href="http://richarizardd.me">Richard. J. Chen</a>, <a href="https://www.kuanchchen.com">Chengkuan Chen</a>, <a href="https://www.linkedin.com/in/yicong-jackson-li/">Yicong Li</a>, <a href="https://twitter.com/tiffanyytchen">Tiffany Y. Chen</a>, <a href="https://www.gatesfoundation.org/about/leadership/andrew-trister">Andrew D. Trister</a>, <a href="http://www.cs.toronto.edu/~rahulgk/index.html">Rahul G. Krishnan*</a>, <a href="https://faisal.ai/">Faisal Mahmood*</a></em></br> </summary>@inproceedings{chen2022scaling,
author = {Chen, Richard J. and Chen, Chengkuan and Li, Yicong and Chen, Tiffany Y. and Trister, Andrew D. and Krishnan, Rahul G. and Mahmood, Faisal},
title = {Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {16144-16155}
}
</details>
<div align="center">
<img width="100%" alt="HIPT Illustration" src=".github/HIPT Architecture.gif">
</div>
<details>
<summary>
<b>Key Ideas & Main Findings</b>
</summary>
- Hierarchical Image Pyramid Transformer (HIPT) Architecture: Three-stage hierarchical ViT that formulates gigapixel whole-slide images (WSIs) as a disjoint set of nested sequences. HIPT unroll the WSI into non-overlapping
[4096 × 4096]
image regions, followed by unrolling each region into non-overlapping[256 × 256]
image patches, and lastly each patch as non-overlapping[16 × 16]
cell tokens. Our method is analgous to that of hierarchical attention networks in long document modeling, in which word embeddings within sentences are aggregated to form sentence-level embeddings and subsequently aggregated into document-level embeddings. Inference in HIPT is performed via bottom-up aggregation of[16 × 16]
visual tokens in their respective[256 × 256]
and[4096 × 4096]
windows via Transformer attention to compute a slide-level representation. - Learning Context-Aware Token Dependencies in WSIs: Note that Transformer attention is computed only in local windows (instead of across the entire WSI), which makes learning long-range dependencies tractable. Though representation learning for
[4096 × 4096]
image regions may seem expensive, also note that the patch size at this level is[256 × 256]
, and thus has similar complexity of applying ViTs to[256 × 256]
image patches with[16 × 16]
tokens. - Hierarchical Pretraining: Since encoding
[4096 x 4096]
images is the same subproblem as encoding[256 x 256]
images, we hypothesize that ViT pretraining techniques can generalize to higher resolutions with little modification. DINO is used to not only pretrain ViT-16 in HIPT, but also ViT-256 via [6 x 6] local and [14 x 14] global crops on a 2D grid-of-features (obtained by using VIT-16 as a patch tokenizer for ViT-256). - Self-Supervised Slide-Level Representation Learning: HIPT is evaluated via pretraining + freezing the ViT-16 / ViT-256 stages, with the ViT-4K stage finetuned with slide-level labels, assessed on cancer subtyping and survival prediction tasks in TCGA. We also perform self-supervised KNN evaluation of HIPT embeddings via computing the mean [CLS]-4K tokens extracted from ViT-256, as a proxy for the slide-level embedding. On Renal Cell Carcinoma subtyping, we report that averaged, pretrained HIPT-4K embeddings without any labels perform as well as CLAM-SB.
Updates / TODOs
Please follow this GitHub for more updates.
- Removing dead code in HIPT_4K library.
- Better documentation on interpretability code example.
- Add pretrained models + instructions for hierarchical visualization.
- Add pre-extracted slide-level embeddings, and code for K-NN evaluation.
- Add weakly-supervised results for Tensorboard.
Pre-Reqs + Installation
This repository includes not only the code base for HIPT, but also saved HIPT checkpoints and pre-extracted HIPT slide embeddings with ~4.08 GiB of storage, which we version control via Git LFS.
To clone this repository without large files initially:
GIT_LFS_SKIP_SMUDGE=1 git clone https://github.com/mahmoodlab/HIPT.git # Pulls just the codebase
git lfs pull --include "*.pth" # Pulls the pretrained checkpoints
git lfs pull --include "*.pt" # Pulls pre-extracted slide embeddings
git lfs pull --include "*.pkl" # Pulls pre-extracted patch embeddings
git lfs pull --include "*.png" # Pulls demo images (required for 4K x 4K visualization)
To clone all files:
git clone https://github.com/mahmoodlab/HIPT.git
To install Python dependencies:
pip install -r requirements.txt
HIPT Walkthrough
How HIPT Works
Below is a snippet of a standalone two-stage HIPT model architecture that can load fully self-supervised weights for nested [16 x 16] and [256 x 256] token aggregation, defined in ./HIPT_4K/hipt_4k.py. Via a few einsum
operations, you can put together multiple ViT encoders and have it scale to large resolutions. HIPT_4K was used for feature extraction of non-overlapping [4096 x 4096] image regions across the TCGA.
import torch
from einops import rearrange, repeat
from HIPT_4K.hipt_model_utils import get_vit256, get_vit4k
class HIPT_4K(torch.nn.Module):
"""
HIPT Model (ViT_4K-256) for encoding non-square images (with [256 x 256] patch tokens), with
[256 x 256] patch tokens encoded via ViT_256-16 using [16 x 16] patch tokens.
"""
def __init__(self,
model256_path: str = 'path/to/Checkpoints/vit256_small_dino.pth',
model4k_path: str = 'path/to/Checkpoints/vit4k_xs_dino.pth',
device256=torch.device('cuda:0'),
device4k=torch.device('cuda:1')):
super().__init__()
self.model256 = get_vit256(pretrained_weights=model256_path).to(device256)
self.model4k = get_vit4k(pretrained_weights=model4k_path).to(device4k)
self.device256 = device256
self.device4k = device4k
self.patch_filter_params = patch_filter_params
def forward(self, x):
"""
Forward pass of HIPT (given an image tensor x), outputting the [CLS] token from ViT_4K.
1. x is center-cropped such that the W / H is divisible by the patch token size in ViT_4K (e.g. - 256 x 256).
2. x then gets unfolded into a "batch" of [256 x 256] images.
3. A pretrained ViT_256-16 model extracts the CLS token from each [256 x 256] image in the batch.
4. These batch-of-features are then reshaped into a 2D feature grid (of width "w_256" and height "h_256".)
5. This feature grid is then used as the input to ViT_4K-256, outputting [CLS]_4K.
Args:
- x (torch.Tensor): [1 x C x W' x H'] image tensor.
Return:
- features_cls4k (torch.Tensor): [1 x 192] cls token (d_4k = 192 by default).
"""
batch_256, w_256, h_256 = self.prepare_img_tensor(x) # 1. [1 x 3 x W x H].
batch_256 = batch_256.unfold(2, 256, 256).unfold(3, 256, 256) # 2. [1 x 3 x w_256 x h_256 x 256 x 256]
batch_256 = rearrange(batch_256, 'b c p1 p2 w h -> (b p1 p2) c w h') # 2. [B x 3 x 256 x 256], where B = (1*w_256*h_256)
features_cls256 = []
for mini_bs in range(0, batch_256.shape[0], 256): # 3. B may be too large for ViT_256. We further take minibatches of 256.
minibatch_256 = batch_256[mini_bs:mini_bs+256].to(self.device256, non_blocking=True)
features_cls256.append(self.model256(minibatch_256).detach().cpu()) # 3. Extracting ViT_256 features from [256 x 3 x 256 x 256] image batches.
features_cls256 = torch.vstack(features_cls256) # 3. [B x 384], where 384 == dim of ViT-256 [ClS] token.
features_cls256 = features_cls256.reshape(w_256, h_256, 384).transpose(0,1).transpose(0,2).unsqueeze(dim=0)
features_cls256 = features_cls256.to(self.device4k, non_blocking=True) # 4. [1 x 384 x w_256 x h_256]
features_cls4k = self.model4k.forward(features_cls256) # 5. [1 x 192], where 192 == dim of ViT_4K [ClS] token.
return features_cls4k
Using the HIPT_4K API
You can use the HIPT_4K model out-of-the-box, and use it to plug-and-play into any of your downstream tasks (example below).
from HIPT_4K.hipt_4k import HIPT_4K
from HIPT_4K.hipt_model_utils import eval_transforms
model = HIPT_4K()
model.eval()
region = Image.open('HIPT_4K/image_demo/image_4k.png')
x = eval_transforms()(region).unsqueeze(dim=0)
out = model.forward(x)
Hierarchical Interpretability
<div align="center"> <img width="100%" alt="DINO illustration" src=".github/HIPT_attention.jpg"> </div>For hierarchical interpretability, please see the following notebook, which uses the following functions in ./HIPT_4K/hipt_heatmap_utils.py.
Downloading + Preprocessing + Organizing TCGA Data
Using the NIH Genomic Data Commons Data Portal and the cBioPortal, we downloaded diagnostic whole-slide images (WSIs) for 28 cancer types using the GDC Data Transfer Tool, followed by using the publicly-available CLAM library for tissue segmentation, tissue patching and feature extraction, which we modified for extracting both ResNet-50 features (pretrained on ImageNet) and ViT-16 features (pretrained on the TCGA). For patching at [256 × 256]
resolution, we used default tissue segmentation parameters. For patching at [4096 × 4096]
resolution, we additionally saved each [4096 × 4096]
image region, which we used for ViT_256-16 and ViT_4096-256 pretraining (-16
suffix == using [16 × 16]-sized tokens in a ViT model, -256
suffix == using [256 × 256]-sized tokens in a ViT model). Extracted TCGA features are organized in the following directories:
TCGA_ROOT_DIR/
└──tcga_acc/
├── ...
└──tcga_blca/
├── ...
└──tcga_brca/
└── WSIs/
├── slide_1.svs
├── slide_2.svs
└── ...
└── extracted_mag20x_patch256_fp/
└── masks/
├── slide_1.png
├── slide_2.png
└── ...
└── patches/
├── slide_1.h5
├── slide_2.h5
└── ...
└── stitches/
├── slide_1.png
├── slide_2.png
└── ...
└── resnet50_trunc_pt_patch_features/
├── slide_1.pt
├── slide_2.pt
└── ...
└── vits_tcga_pancancer_dino_pt_patch_features/
├── slide_1.pt
├── slide_2.pt
└── ...
└── process_list_autogen.csv
└── extracted_mag20x_patch4096_fp/
└── masks/
├── slide_1.png
├── slide_2.png
└── ...
└── patches/
├── slide_1.h5
├── slide_2.h5
└── ...
└── stitches/
├── slide_1.png
├── slide_2.png
└── ...
└── tar_patch_4096/
├── slide_1.tar
├── slide_2.tar
└── ...
└── vits_tcga_pancancer_dino_pt_patch_features/
├── slide_1.pt
├── slide_2.pt
└── ...
└── process_list_autogen.csv
└──tcga_coadread/
├── ...
...
└──tcga_ucec/
├── ...
</details>
Each cancer type is organized as its own folder in TCGA_ROOT_DIR
, which additionally contains the following subfolders:
In extracting patches at 20X magnification with non-overlapping patch sizes of 256, we create a results directory called extracted_mag20x_patch256_fp
that will contain the following files / folders:
WSIs/
: Raw*.svs
WSIs for that cancer typeextracted_mag20x_patch256_fp
: Extracted features at 20× magnification for[256 × 256]
patches (performed only for BRCA, COADREAD, LUAD, LUSC, CCRCC, CHRCC, PRCC, and STAD studies in TCGA). The_fp
suffix represents the use of 'fast patching" as performed in CLAM, in which coordinates instead of raw patches are saved. This folder contains the following subfolders:masks/
: Directory of segmented tissue-containing regions (one image per WSI).patches/
: Directory of extracted image patches (one .h5 file per WSI, where each entry corresponds to the coordinates of the top-left corner of a patch)stitches/
: Directory of downsampled visualizations of stitched tissue patches, used a sanity check to inspect whether we patched correctly (one image per WSI).resnet50_trunc_pt_patch_features/
: Directory of pre-extracted ResNet-50 features (pretrained on ImageNet) for each patch within each WSI (with patches read via OpenSlide using coordinates inpatches/
, saved in a*.pt
format. Each*.pt
file is a[M × 1024]
-sized Tensor containing extracted 1024-dim embeddings forM
patches in the WSI.vits_tcga_pancancer_dino_pt_patch_features/
: Directory of pre-extracted ViT-16 features (pretrained on TCGA) for each patch within each WSI (with patches read via OpenSlide using coordinates inpatches/
, saved in a*.pt
format. Each*.pt
file is a[M × 384]
-sized Tensor containing extracted 384-dim embeddings forM
patches in the WSI.process_list_autogen.csv
: An auto-generated csv file that contains a list of all slides processed, along with their segmentation/patching parameters used.
extracted_mag20x_patch4096_fp
: Extracted features at 20× magnification for[4096 × 4096]
image regions, containing the following subfolders:masks/
: Same as[256 × 256]
setting.patches/
: Same as[256 × 256]
setting.stitches/
: Same as[256 × 256]
setting.tar_patch_4096/
: Directory of saved[4096 × 4096]
image regions for each WSI, stored in a*.tar
format using WebDataset API.vits_tcga_pancancer_dino_pt_patch_features/
: Directory of pre-extracted ViT-16 features (pretrained on TCGA) for each[4096 × 4096]
region within each WSI (with regions read via OpenSlide using coordinates inpatches/
, saved in a*.pt
format. Each*.pt
file is a[M × 256 × 384]
-sized Tensor containing extracted 384-dim embeddings forM
regions in the WSI, which each region represented as as a 256-length sequence of[256 × 256]
patch embeddings.process_list_autogen.csv
: An auto-generated csv file that contains a list of all slides processed, along with their segmentation/patching parameters used. Note that in using a large image resolution for patching, not all WSIs are used in[4096 × 4096]
evaluation.
Organizing the folders and subfolders for all of these different cancer types (with different features types too) allowed ease of running classification experiments.
Hierarchical Pretraining for ViT-16/256 Models + Pretrained Models
<details> <summary> Example Directory </summary>TCGA_PRETRAINING_DIR/
└──patch_256_pretraining/
├── patch_1.png
├── patch_2.png
└── ...
└──region_4096_pretraining/
├── slide_1_1.pt
├── slide_1_2.pt
└── ...
└──ckpts/
└── pretrain/
└── vit256_s_dino.pth
└── vit4k_xs_dino.pth
</details>
We set up the following directories for ViT_256-16 and ViT_4K-256 pretraining respectively:
.../path/to/patch_256_pretraining/
: Directory of raw[256 × 256]
patches (as*.png
format) extracted from thetar_patch_4096/
subdirectories of each cancer type, used to pretrain ViT_256-16..../path/to/region_4096_pretraining/
: Directory of pre-extracted ViT_4K-256 features for each[4096 × 4096]
region across all WSIs (in total: 433779 regions). Each*.pt
file is a[256 × 384]
-sized Tensor, which is a 256-length sequence of pre-extracted ViT_256-16 features for each[256 × 256]
patch. This folder is used to pretain ViT_4K-256../HIPT_4K/Checkpoints/
: Directory for holding the pretrained weights, which we use for feature extraction. Our pretraining method largely follows the original DINO framework for conventional[256 × 256]
image pretraining using ViT_256-16, which we extend to the[4096 × 4096]
setting. Again, note that the-16
suffix refers to using [16 × 16]-sized tokens in a ViT model, and the-256
suffix using [256 × 256]-sized tokens in a ViT model. The following commands below are used for pretraining.
python -m torch.distributed.launch --nproc_per_node=8 main_dino.py --arch vit_small --data_path /path/to/TCGA_PRETRAINING_DIR/patch_256_pretraining/ --output_dir /path/to/TCGA_PRETRAINING_DIR/ckpts/pretrain/ --epochs 100
python -m torch.distributed.launch --nproc_per_node=8 main_dino4k.py --arch vit_xs --data_path /path/to/TCGA_PRETRAINING_DIR/region_4k_pretraining/ --output_dir /path/to/TCGA_PRETRAINING_DIR/ckpts/pretrain/ --epochs 100
<table>
<tr>
<th>SSL Strategy</th>
<th>ViT SSL</th>
<th>Dataset</th>
<th>Iteration</th>
<th>Batch Size</th>
<th>Arch</th>
<th>Image Size</th>
<th>Token Size</th>
<th>Dim</th>
<th>Download</th>
</tr>
<tr>
<td rowspan="2">Hierarchical Pretraining</td>
<td><a href="https://github.com/facebookresearch/dino">DINO</a></td>
<td>TCGA</td>
<td>400,000</td>
<td>256</td>
<td>ViT-S/16</td>
<td>256</td>
<td>16</td>
<td>384</td>
<td><a href="https://github.com/mahmoodlab/HIPT/blob/master/HIPT_4K/Checkpoints/vit256_small_dino.pth">Backbone</a></td>
</tr>
<tr>
<td><a href="https://github.com/facebookresearch/dino">DINO</a></td>
<td>TCGA</td>
<td>200,000</td>
<td>256</td>
<td>ViT-XS/256</td>
<td>4096</td>
<td>256</td>
<td>192</td>
<td><a href="https://github.com/mahmoodlab/HIPT/blob/master/HIPT_4K/Checkpoints/vit4k_xs_dino.pth">Backbone</a></td>
</tr>
</table>
Weakly-Supervised Training + Evaluation
Following ViT-16/256 pretraining and pre-extracting instance-level [256 × 256]
features using ViT-16, we extend the publicly-available CLAM scaffold code for running 10-fold cross-validation experiments as well as implement several of the current weakly-supervised baselines. Our main method is hipt_lgp
(abbreviated for HIPT with Local-Global Pretraining). We make available our saved results directory, evaluation code, and a Jupyter Notebook containing a walkthrough of our method.
GPU=0
DATAROOT=/path/to/TCGA_ROOT_DIR/
TASK=tcga_brca_subtype
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 0.25
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 1.0
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 0.25 --pretrain_4k vit4k_xs_dino
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 1.0 --pretrain_4k vit4k_xs_dino
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 0.25 --pretrain_4k vit4k_xs_dino --freeze_4k
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 1.0 --pretrain_4k vit4k_xs_dino --freeze_4k
TASK=tcga_kidney_subtype
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 0.25
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 1.0
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 0.25 --pretrain_4k vit4k_xs_dino
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 1.0 --pretrain_4k vit4k_xs_dino
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 0.25 --pretrain_4k vit4k_xs_dino --freeze_4k
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 1.0 --pretrain_4k vit4k_xs_dino --freeze_4k
TASK=tcga_lung_subtype
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 0.25
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 1.0
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 0.25 --pretrain_4k vit4k_xs_dino
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 1.0 --pretrain_4k vit4k_xs_dino
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 0.25 --pretrain_4k vit4k_xs_dino --freeze_4k
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --model_type hipt_lgp --task $TASK --prop 1.0 --pretrain_4k vit4k_xs_dino --freeze_4k
</details>
Analagously, we also use the MCAT scaffold code for survival prediction, and make available our saved results directory / tensorboard logs and evaluation code.
<details> <summary> Full List of Training Survival Commands </summary>DATAROOT=/path/to/TCGA_ROOT_DIR/
GPU=0
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --which_splits 5foldcv --split_dir tcga_brca --mode pyramid --model_type hipt_lgp --pretrain_4k vit4k_xs_dino --freeze_4k
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --which_splits 5foldcv --split_dir tcga_coadread --mode pyramid --model_type hipt_lgp --pretrain_4k vit4k_xs_dino --freeze_4k
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --which_splits 5foldcv --split_dir tcga_kirc --mode pyramid --model_type hipt_lgp --pretrain_4k vit4k_xs_dino --freeze_4k
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --which_splits 5foldcv --split_dir tcga_kirp --mode pyramid --model_type hipt_lgp --pretrain_4k vit4k_xs_dino --freeze_4k
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --which_splits 5foldcv --split_dir tcga_luad --mode pyramid --model_type hipt_lgp --pretrain_4k vit4k_xs_dino --freeze_4k
CUDA_VISIBLE_DEVICES=$GPU python main.py --data_root_dir $DATAROOT --which_splits 5foldcv --split_dir tcga_stad --mode pyramid --model_type hipt_n --pretrain_4k vit4k_xs_dino --freeze_4k
</details>
Understanding Baselines, Clarifications, and Future Work
In making the pretrained weights for HIPT fully-available, we hope that HIPT can be plugged-and-played in your experiments, and you would find the same level of improvement :). In building off of this work, we clarify a few details:
- As slide-level tasks in the TCGA do not have official benchmarks, reported AUC performance may vary with different train-test splits. The results in this work use the following 10-fold CV and 5-fold CV train-test splits, which have been used consistently in prior works. Though the comparisons of MIL architecture performance are equivalent (all methods using same pretrained patch-level embeddings), general comparisons with MIL performance of prior works cannot be made, as: 1) different patch-level embeddings are used for training MIL methods (ImageNet ResNet-50 vs. SSL ViT-16), 2) a number of WSIs were excluded in each cohort, due to the lack of tissue content in patching at [4096 x 4096] resolution. To reproduce the results of this paper, you must use the exact train-test splits with the same pretrained embedding type.
- Despite average ViT_4K-256 performing well in KNN evaluation, average ViT_256-16 embeddings did not perform as well as mean ResNet-50 (transferred from ImageNet) embeddings on some of the downstream tasks. Since Hierarchical Pretraining of ViT_4K-256 depends on pre-extracted ViT_256-16 embeddings, there is (of course) considerable room for improvement in boosting unsupervised and weakly-supervised slide-level performance in refining the ViT_256-16 encoder.
Issues
- Please open new threads or report issues directly to richardchen@g.harvard.edu.
Acknowledgements, License & Usage
- We thank Felix Yu, Ming Y. Lu, Chunyuan Li, and the BioML group at Microsoft Research New England for their insightful feedback.
- Code for Weakly-Supervised Subtyping + Survival Classification was largely adapted from CLAM and MCAT
- Code for Hierarchical Pretraining was largely adapted via making modifications to DINO
- Code for self-supervised evaluation was built on our previous NeurIPS workshop paper
- If you found our work useful in your research, please consider citing our works(s) at:
@article{chen2022self,
author = {Chen, Richard J and Krishnan, Rahul G},
title = {Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology},
journal = {Learning Meaningful Representations of Life, NeurIPS 2021},
year = {2021},
}
@inproceedings{chen2022scaling,
author = {Chen, Richard J. and Chen, Chengkuan and Li, Yicong and Chen, Tiffany Y. and Trister, Andrew D. and Krishnan, Rahul G. and Mahmood, Faisal},
title = {Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {16144-16155}
}
Any work that cites HIPT should also cite the original Vision Transformer and DINO.
© This code is made available under the Commons Clasuse License and is available for non-commercial academic purposes.