Home

Awesome

Self-Refine: Iterative Refinement with Self-Feedback

With Self-Refine, LLMs can generate feedback on their work, use it to improve the output, and repeat this process.

image

<center><h4> <a href="https://selfrefine.info"> Website </a> | <a href="https://arxiv.org/pdf/2303.17651.pdf">Paper</a> </h4></center> <hr> <!-- START doctoc generated TOC please keep comment here to allow auto update --> <!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->

Table of Contents

<!-- END doctoc generated TOC please keep comment here to allow auto update --> <hr>

Updates

<p align="center"> <strong>Stokes' Theorem Example</strong><br> <img src="docs/visual_self_refine_examples/stokes__theorem.gif" alt="Visual Self-Refine Example 1" width="300" height="300" /> </p> <p align="center"> <strong>Unicorn Example</strong><br> <img src="docs/visual_self_refine_examples/unicorn.gif" alt="Visual Self-Refine Example 2" width="300" height="300" /> </p>

Setup

git clone https://github.com/reasoning-machines/prompt-lib
pip install prompt-lib/

Depending on your default settings, you may want to use the following to set a PYTHONPATH:

export PYTHONPATH=".:../:.:src:../:../../:.:prompt-lib"

Getting Started with Acronym Generation

python -u src/acronym/run.py "Using language models of code for few-shot commonsense"
0 INIT> Using language models of code for few-shot commonsense

0 GEN> CLoCK
0 SCORES> * Ease of pronunciation: CLoCK is pronounced "clah-k". This is easy acronym to pronounce. 4/5 
* Ease of spelling: CLoCK is easy to spell. 5/5 
* Relation to title: CLoCK stands for "Code Language Models of Commonsense Knowledge" which is related to the title. 5/5 
* Positive connotation: CLoCK is a positive acronym. It implies accuracy and efficiency. 5/5 
* Well-known: CLoCK is not a well-known acronym. 2/5

* Total score: 21/25

1 GEN> CMNSC
1 SCORES> * Ease of pronunciation: CMNSC is pronounced "see-min-es-see". This is a difficult acronym to pronounce. 1/5 
* Ease of spelling: CMNSC is difficult to spell. 1/5 
* Relation to title: CMNSC stands for "Commonsense" which is related to the title. 4/5 
* Positive connotation: CMNSC is a neutral acronym. 3/5 
* Well-known: CMNSC is not a well-known acronym. 1/5

* Total score: 10/25

2 GEN> COMMIT
2 SCORES> * Ease of pronunciation: COMMIT is pronounced "com-mit". This is an easy acronym to pronounce. 4/5
* Ease of spelling: COMMIT is easy to spell. 5/5
* Relation to title: COMMIT stands for "Commonsense Model of Code for Intuitive Training" which is related to the title. 5/5 
* Positive connotation: COMMIT is a positive acronym. It implies commitment and dedication. 5/5
* Well-known: COMMIT is not a well-known acronym. 2/5

* Total score: 21/25
<hr>

Dialogue Response Generation

PYTHONPATH="." python -u src/responsegen/run.py --output <OUTPUT FILE> --size <DATA SIZE>
<hr>

Code Readability Improvement

PYTHONPATH="." python -u src/readability/readability.py --output <OUTPUT FILE>
PYTHONPATH="." python -u src/readability/{count_comment|count_function|count_meaningful_var}.py --file <INPUT FILE>
<hr>

Commongen

python -u src/commongen/run.py cmd stair bubble team dryer puppy aliens cat 
<hr>

GSM-8k

python -u src/gsm/run.py 
python src/gsm/gsm_selfref_eval.py --path  data/tasks/gsm/gsm_outputs.jsonl
<hr>

Yelp

python -u src/sentiment_transfer_sr/run.py data/tasks/yelp/yelp-extreme.jso
nl 4 none
<hr>

PIE

python -u src/pie/run.py --slow_programs_file data/tasks/pie/codenet-python-test-1k.jsonl --max_attempts 4 --outfile data/tasks/pie/output --feedback_type rich
<hr>

General setup

  1. Init: used to initialize the task. This is how the initial output is generated.

  2. Feedback: used to get feedback from the model on the intermediate results.

  3. Iterate: used to get the next iteration from the model, based on the feedback.

  1. Init prompt:
python src/commongen/task_init.py
  1. Feedback prompt:
 python src/commongen/feedback.py
  1. Iterate prompt:
python src/commongen/task_iterate.py

You can also see these prompts on our website.

Citation

@misc{madaan2023selfrefine,
      title={Self-Refine: Iterative Refinement with Self-Feedback}, 
      author={Aman Madaan and Niket Tandon and Prakhar Gupta and Skyler Hallinan and Luyu Gao and Sarah Wiegreffe and Uri Alon and Nouha Dziri and Shrimai Prabhumoye and Yiming Yang and Sean Welleck and Bodhisattwa Prasad Majumder and Shashank Gupta and Amir Yazdanbakhsh and Peter Clark},
      year={2023},
      eprint={2303.17651},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
flowchart LR
    Generator -->|Initializes| Unrefined
    Critic_1 --> Critique_fb
    ... --> Critique_fb
    Critic_k --> Critique_fb
    Critique_fb --> Unrefined{Output to Refine}
    Unrefined --> Refiner
    Refiner --> |R: y_t, x, fb| Refined_Output{Refined Output}
    Refined_Output --> |Stopping Criteria Not Met| Unrefined