Awesome
MCAN
This code is based on https://github.com/nmhkahn/CARN-pytorch.
Test Pretrained Models
$ python3 mcan/sample.py --model mcan-fast \
--sample_scale 0 \
--sample_dir ./sample \
--sample_data_set calculate_sets_x2/Set5 \
--ckpt_path checkpoint/MCAN-FAST.pth
Sampling the results of models. In the --sample_scale
argument, [2, 3, 4] is for single-scale sampling and 0 for multi-scale sampling.
Training Models
# for MCAN
$ python3 mcan/train.py --patch_size 64 \
--batch_size 64 \
--max_steps 1200000 \
--model mcan \
--train_data_path dataset/DIV2K_train_x234.h5 \
--num_gpu 1 \
--ckpt_name mcan \
--ckpt_dir checkpoint/mcan \
--decay_interval 400000 \
--lr 2e-4 \
--print_interval 10 \
--decay_chance 2
In the --scale
argument, [2, 3, 4] is for single-scale training and 0 for multi-scale learning. --decay_chance
represents the times of learning-rate decay throughout the training process.
Calculating PSNR
$ python3 mcan/calculate.py --model mcan-fast \
--scale 2 \
--test_data_set calculate_sets_x2/Set5 \
--ckpt_path checkpoint/MCAN-FAST.pth