Awesome
Autoregressive Structured Prediction with Language Models
This repository contains PyTorch implementation and pre-trained models for ASP
, described in Autoregressive Structured Prediction with Language Models.
Contents
Setup
1. Clone this repo:
git clone https://github.com/lyutyuh/ASP.git
cd ASP
export ASP=$PWD # setting environment variable
2. Prepare the environment
2.1 Create virtual environment with:
<details> <summary> <code> pip </code> </summary>python -m venv <path_to_venv>/asp # create a new environment (asp)
source <path_to_venv>/asp/bin/activate
pip install -r requirements.txt
</details>
or
<details>
<summary> <code>conda</code> </summary>
conda env create -f environment.yml # create a new environment (asp)
</details>
Download and preprocess the datasets
<details> <summary> <code> named entity recognition </code> </summary>CoNLL-03
wget https://polybox.ethz.ch/index.php/s/bFf8vJBonIT7sr8/download -O ./data/conll03_ner.zip
unzip ./data/conll03_ner.zip -d ./data
rm ./data/conll03_ner.zip
python ./data/conll03_ner/conll03_to_json.py
python ./data/t5minimize_ner.py ./data/conll03_ner ./data/conll03_ner
OntoNotes V5
Coming soon!
</details> <details> <summary> <code> end-to-end relation extraction </code> </summary>CoNLL-04
wget https://polybox.ethz.ch/index.php/s/Lk44AwhOeDSeZTh/download -O ./data/conll04_ere.zip
unzip ./data/conll04_ere.zip -d ./data
rm ./data/conll04_ere.zip
python ./data/t5minimize_ere.py ./data/conll04_ere/ ./data/conll04_ere
ACE-05
ACE-05 is not a publically available dataset. Please follow https://github.com/luanyi/DyGIE/tree/master/preprocessing to obtain
the dataset json files {train,dev,test}.json
and copy them to ./data/ace05_ere/
.
Then:
python ./data/ace05_ere/ace05_to_json.py
python ./data/t5minimize_ere.py ./data/ace05_ere ./data/ace05_ere
</details>
<details>
<summary> <code> coreference resolution </code> </summary>
CoNLL-12 (OntoNotes)
OntoNotes is not a publically available dataset. Please follow http://conll.cemantix.org/2012/data.html and https://catalog.ldc.upenn.edu/LDC2013T19 to obtain
the files {train,dev,test}.english.v4_gold_conll
and copy them to ./data/ontonotes_coref/
.
Then:
python ./data/t5minimize_coref.py ./data/ontonotes_coref/ ./data/ontonotes_coref/
</details>
Tasks
For task in {ner,ere,coref}
:
python run_{task}.py <config_name> 0
Please find the <config_name>
in each {ner,ere,coref}.conf
file under configs
Running on New Datasets
1. prepare the data
- For
named entity recognition
andrelation extraction
, convert the new dataset to<newdataset>_{train,dev,test}.json
in the following format:
[{
"tokens": ["John", "Wilkes", "Booth", ",", "who", "assassinated", "President", "Lincoln", ",", "was", "an", "actor", "."],
"entities": [{"type": "Peop", "start": 0, "end": 3}, {"type": "Peop", "start": 6, "end": 8}],
"relations": [{"type": "Kill", "head": 0, "tail": 1}] # Not necessary for NER
}, ...]
and <newdataset>_types.json
:
{
"entities": {
"Loc": {"short": "Loc", "verbose": "Location"},
"Org": {"short": "Org", "verbose": "Organization"},
"Peop": {"short": "Peop", "verbose":"People"},
"Other": {"short": "Other", "verbose": "Other"}
},
"relations": { # Not necessary for NER
"Work_For": {"short": "Work", "verbose": "Work for", "symmetric": false},
"Kill": {"short": "Kill", "verbose": "Kill", "symmetric": false},
"OrgBased_In": {"short": "OrgBI", "verbose": "Organization based in", "symmetric": false},
"Live_In": {"short": "Live", "verbose": "Live in", "symmetric": false},
"Located_In": {"short": "LocIn", "verbose": "Located in", "symmetric": false}
}
}
and run
python ./data/t5minimize_ere.py ./data/<newdataset>/ ./data/<newdataset>/
- For coreference resolution, convert the new dataset to CoNLL-12 format. Then
python ./data/t5minimize_coref.py ./data/<newdataset>/ ./data/<newdataset>/
2. Prepare the configuration
Add a new entry in the corresponding .conf
file under configs with the directory to the new dataset data_dir = ${ASP}/data/<newdataset>/
Pre-trained models
Use the following command to load the pre-trained model and evaluate on the corresponding task.
config_name
refers to the experiment name given in the .conf
file under configs.
python evaluate_<task>.py <config_name> <checkpoint_name> <gpu_id>
1. Coreference resolution
config_name | checkpoint_name | dataset | link | params |
---|---|---|---|---|
flant5_base | tliu/asp-coref-flan-t5-base | CoNLL-2012 (OntoNotes) | link | 220 M |
flant5_large | tliu/asp-coref-flan-t5-large | CoNLL-2012 (OntoNotes) | link | 770 M |
flant5_xl | tliu/asp-coref-flan-t5-xl | CoNLL-2012 (OntoNotes) | link | 3 B |
t0_3b | tliu/asp-coref-t0-3b | CoNLL-2012 (OntoNotes) | link | 3 B |
2. Named entity recognition (NER)
config_name | checkpoint_name | dataset | link | params |
---|---|---|---|---|
flant5_base | tliu/asp-ner-flan-t5-base | CoNLL-03 NER | link | 220 M |
flant5_large | tliu/asp-ner-flan-t5-large | CoNLL-03 NER | link | 770 M |
3. End-to-end relation extraction (ERE)
config_name | checkpoint_name | dataset | link | params |
---|---|---|---|---|
flant5_base_conll04 | tliu/asp-re-flan-t5-base | CoNLL-04 RE | link | 220 M |
flant5_large_conll04 | tliu/asp-re-flan-t5-large | CoNLL-04 RE | link | 770 M |
flant5_xl_conll04 | tliu/asp-re-flan-t5-xl | CoNLL-04 RE | link | 3 B |
Citation
@inproceedings{liu-etal-2022-autoregressive,
title={Autoregressive Structured Prediction with Language Models},
author={Tianyu Liu and Yuchen Jiang and Nicholas Monath and Ryan Cotterell and Mrinmaya Sachan},
year={2022},
url={https://arxiv.org/abs/2210.14698},
eprint={2210.14698},
archivePrefix={arXiv},
primaryClass={cs.CL}
}