Awesome
Hybrid Ranking Network for Text-to-SQL
Code for our paper Hybrid Ranking Network for Text-to-SQL
Environment Setup
Python 3.8
Pytorch 1.7.1
or higherpip install -r requirements.txt
We can also run experiments with docker image:
docker build -t hydranet -f Dockerfile .
The built image above contains processed data and is ready for training and evaluation.
Data Preprocessing
- Create data folder and output folder first:
mkdir data && mkdir output
- Clone WikiSQL repo:
git clone https://github.com/salesforce/WikiSQL && tar xvjf WikiSQL/data.tar.bz2 -C WikiSQL
- Preprocess data:
python wikisql_gendata.py
Training
- Run
python main.py train --conf conf/wikisql.conf --gpu 0,1,2,3 --note "some note"
. - Model will be saved to
output
folder, named by training start datetime.
Evaluation
- Modify model, input and output settings in
wikisql_prediction.py
and run it. - Run WikiSQL evaluation script to get official numbers:
cd WikiSQL && python evaluate.py data/test.jsonl data/test.db ../output/test_out.jsonl
Note: the WikiSQL evaluation script will encounter error when running in Windows system. Hence we included the fixed version for Windows User (run in root folder): python wikisql_evaluate.py WikiSQL/data/test.jsonl WikiSQL/data/test.db output/test_out.jsonl
Trained Model
Trained model that can reproduce reported number on WikiSQL leaderboard is attached in the releases (see under "Releases" in the right column). Model prediction outputs are also attached.