Home

Awesome

inference-suboptimality

Code regarding evaluation for paper Inference Suboptimality in Variational Autoencoders. [arxiv]

Dependencies

Training

To train on MNIST and Fashion, unzip the compressed files in folder datasets/.

python run.py --train --dataset <dataset> (--lr-schedule --warmup --early-stopping)

To train on CIFAR, set the argument for the dataset flag to cifar. The dataset should be downloaded automatically, if not already downloaded.

Evaluation

Other Experiments

For decoder size, flow affect amortization, test set gap and other experiments, refer to this.

Citation

If you use our code, please consider cite the following: Chris Cremer, Xuechen Li, David Duvenaud. Inference Suboptimality in Variational Autoencoders.

@article{cremer2018inference,
  title={Inference Suboptimality in Variational Autoencoders},
  author={Cremer, Chris and Li, Xuechen and Duvenaud, David},
  journal={ICML},
  year={2018}
}