Awesome
BERT-EMD
This repository contains an implementation with PyTorch of model presented in the paper "BERT-EMD: Many-to-Many Layer Mapping for BERT Compression with Earth Mover's Distance" in EMNLP 2020. The figure below illustrates a high-level view of the model's architecture. For more details about the techniques of BERT-EMD, refer to our paper.
Installation
Run command below to install the environment (using python3).
pip install -r requirements.txt
Data and Pre-train Model Prepare
- Get GLUE data:
python download_glue_data.py --data_dir glue_data --tasks all
BaiduYun for alternative
- Get BERT-Base offical model from here, download and unzip to directory
./model/bert_base_uncased
. Convert tf model to pytorch model:
cd bert_finetune
python convert_bert_original_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path ../model/bert_base_uncased \
--bert_config_file ../model/bert_base_uncased/bert_config.json \
--pytorch_dump_path ../model/pytorch_bert_base_uncased
Or you can download the pytorch version directly from huggingface and download to ../model/pytorch_bert_base_uncased
.
- Get finetune teacher model, take task MRPC for example (working dir:
./bert_finetune
):
export MODEL_PATH=../model/pytorch_bert_base_uncased/
export TASK_NAME=MRPC
python run_glue.py \
--model_type bert \
--model_name_or_path $MODEL_PATH \
--task_name $TASK_NAME \
--do_train \
--do_eval \
--do_lower_case \
--data_dir ../data/glue_data/$TASK_NAME/ \
--max_seq_length 128 \
--per_gpu_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 4.0 \
--save_steps 2000 \
--output_dir ../model/$TASK_NAME/teacher/ \
--evaluate_during_training \
--overwrite_output_dir
-
Get the pretrained general distillation TinyBERT v2 student model: 4-layer and 6-layer. Unzip to directory
model/student/layer4
andmodel/student/layer6
respectively. (This link may be temporarily unavailable, for alternative you can download from here BaiduYun). -
Distill student model, take 4-layer student model for example:
cd ../bert_emd
export TASK_NAME=MRPC
python emd_task_distill.py \
--data_dir ../data/glue_data/$TASK_NAME/ \
--teacher_model ../model/$TASK_NAME/teacher/ \
--student_model ../model/student/layer4/ \
--task_name $TASK_NAME \
--output_dir ../model/$TASK_NAME/student/ \
--beta 0.01 --theta 1
update 2021/08/06
We replace the layer weight update method with division by addition. In our experiments, this normalization method is better than softmax on some datasets. Wight can be in range from 1e-3 to 1e+3
update 2022/06/01
We add the hyperparameters for best-performing models as bellow and fixed some bugs.
Hyperparameters configurations for best-performing models
Layer Num | Task | alpha | beta | T_emd | T | Learning Rate |
---|---|---|---|---|---|---|
4 | CoLA | 1 | 0.001 | 5 | 1 | 2.00E-05 |
4 | MNLI | 1 | 0.005 | 1 | 3 | 5.00E-05 |
4 | MRPC | 1 | 0.001 | 10 | 1 | 2.00E-05 |
4 | QQP | 1 | 0.005 | 1 | 3 | 2.00E-05 |
4 | QNLI | 1 | 0.005 | 1 | 3 | 2.00E-05 |
4 | RTE | 1 | 0.005 | 1 | 1 | 2.00E-05 |
4 | SST-2 | 1 | 0.001 | 1 | 1 | 2.00E-05 |
4 | STS-b | 1 | 0.005 | 1 | 1 | 3.00E-05 |
6 | CoLA | 1 | 0.001 | 1 | 7 | 2.00E-05 |
6 | MNLI | 1 | 0.005 | 1 | 1 | 5.00E-05 |
6 | MRPC | 1 | 0.005 | 1 | 1 | 2.00E-05 |
6 | QQP | 1 | 0.005 | 1 | 1 | 2.00E-05 |
6 | QNLI | 1 | 0.001 | 1 | 1 | 5.00E-05 |
6 | RTE | 1 | 0.005 | 1 | 1 | 2.00E-05 |
6 | SST-2 | 1 | 0.001 | 1 | 1 | 2.00E-05 |
6 | STS-b | 1 | 0.005 | 1 | 1 | 3.00E-05 |