Home

Awesome

Towards Robust Referring Video Object Segmentation with Cyclic Relational Consistency

Xiang Li, Jinglu Wang, Xiaohao Xu, Xiao Li, Bhiksha Raj, Yan Lu

<p align="center"><img src="illustration.jpg" width="700"/></p>

Updates

Install

conda install pytorch==1.8.1 torchvision==0.9.1 torchaudio==0.8.1 -c pytorch
pip install -r requirements.txt 
pip install 'git+https://github.com/facebookresearch/fvcore' 
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
cd models/ops
python setup.py build install
cd ../..

Docker

You may try docker to quick start.

Weights

Please download and put the checkpoint.pth in the main folder.

Run demo:

Inference on images in the demo/demo_examples.

python demo.py --with_box_refine --binary --freeze_text_encoder --output_dir=output/demo --resume=checkpoint.pth --backbone resnet50 --ngpu 1 --use_cycle --mix_query --neg_cls --is_eval --use_cls --demo_exp 'a big track on the road' --demo_path 'demo/demo_examples'

Inference:

If you want to evaluate on Ref-YTVOS, you may try inference_ytvos.py or inference_ytvos_segm.py if you encounter OOM for the entire video inference.

python inference_ytvos.py --with_box_refine --binary --freeze_text_encoder --output_dir=output/eval --resume=checkpoint.pth --backbone resnet50 --ngpu 1 --use_cycle --mix_query --neg_cls --is_eval --use_cls --ytvos_path=/data/ref-ytvos

Related works for robust multimodal video segmentation:

R2-Bench: Benchmarking the Robustness of Referring Perception Models under Perturbations , Arxiv 2024

Towards Robust Audiovisual Segmentation in Complex Environments with Quantization-based Semantic Decomposition, CVPR 2024

Citation

@inproceedings{li2023robust,
  title={Robust referring video object segmentation with cyclic structural consensus},
  author={Li, Xiang and Wang, Jinglu and Xu, Xiaohao and Li, Xiao and Raj, Bhiksha and Lu, Yan},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={22236--22245},
  year={2023}
}